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Preface

The Max Planck Institute for Human Cognitive and Brain 
Sciences has continued its pursuit of excellent and in-
ternationally renowned research and development in the 
past three years (2017 to 2019). The Institute currently 
houses four full departments, eight research groups, and 
three methods and development units. Around 380 staff 
members contribute to the lively buzzing atmosphere, 
the cutting-edge science, and the daily multicultural ex-
change.

As always, the Institute continues to develop. The 
youngest of our departments, the new Department of 
Psychology headed by Christian Doeller, has settled in and 
is rapidly growing. Christian Doeller joined the Institute, 
as its latest director, from Trondheim and Donders in 
2018. He brings with him a prestigious ERC Consolidator 
grant as well as several large-scale EU-wide collabora-
tive projects. The Department of Neurophysics headed 
by Nikolaus Weiskopf has made substantial progress 
on their ERC Consolidator grant held in collaboration 
with UCL in London. Angela D. Friederici’s Department 
of Neuropsychology continues their involvement in a 
large-scale international priority programme funded by 
the DFG and have recently secured a new ERC Starting 
Grant. The Department of Neurology, under the tutelage 
of Arno Villringer, secured several new large-scale project 
grants on obesity and neural rehabilitation and started 
the follow-up of the LIFE population health study togeth-
er with Leipzig University on 10,000 subjects. 12 of Arno 
Villringer’s former group members have achieved faculty 
positions in the last three years.

Of course, development means change. In December 
2018, Professor Tania Singer, former director of the 
Department of Social Neuroscience, left the Institute and 
started a new Research Group on Social Neuroscience 
in Berlin. Four of our independent research group lead-
ers have left the Institute for new positions in capital cit-
ies across Europe. Stefanie Höhl, who formerly headed 
the Max Planck Research Group “Early Social Cognition”, 
has moved to Vienna to take up a full professorship po-
sition. Daniel Margulies, former leader of the Max Planck 
Research Group “Neuroanatomy and Connectivity”, ac-
cepted a Chargé de Recherche position in Paris, France. 

Katharina von Kriegstein’s research group came to an end 
in 2017. She moved to Dresden for a full professorship po-
sition. The Otto Hahn group of Daniela Sammler wrapped 
up in summer 2019. Daniela now holds a senior research-
er position at the Institute.

At the same time, six new research groups have been es-
tablished in the reporting period. Gesa Hartwigsen and 
her “Cognition and Plasticity” Research Group started as 
one	of	 the	first	 recipients	of	 the	Lise	Meitner	Excellence	
Programme—designed to recruit and promote exception-
ally	qualified	female	scientists.	The	Max	Planck	Research	
Group “Pain Perception” is headed by Falk Eippert who 
joined us from Oxford (UK). The Max Planck Research 
Group “Language Cycles” is headed by Lars Meyer; 
the Research Group “Stress and Family Health” is led 
by Veronika Engert. Martin Hebart recently joined the 
Institute, from the NIHH in Bethesda (USA), to start the 
Max Planck Research Group “Vision and Computational 
Cognition”. Finally, the Minerva Fast Track Group 
“Milestones of Early Cognitive Development” is led by 
Charlotte Grosse Wiesmann, who moved to Leipzig from 
Copenhagen, Denmark.

There have also been advances and changes for the 
Institute’s students. The International Max Planck 
Research School on Neuroscience of Communication 
(NeuroCom) has continued its success in both recruiting 
promising new doctoral students and seeing the “old” co-
horts to completion. During the reporting period, the num-
ber of doctoral students pursuing their degree within the 
programme has doubled.

In addition to the IMPRS NeuroCom, the Institute now also 
houses the Max Planck School of Cognition, a brand-new, 
interdisciplinary, highly competitive doctoral programme 
involving numerous prestigious German universities and 
research organisations. 

We hope you will enjoy reading this report, which contains 
up-to-date	scientific	and	administrative	information	about	
our Institute and world-class research.
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The Max Planck Institute for  
Human Cognitive and Brain Sciences

The Max Planck Institute for Human Cognitive and Brain 
Sciences at Stephanstrasse in Leipzig was established on 
1 January 2004 by a merger between the former Leipzig 
Max Planck Institute of Cognitive NeuroScience and the 
Munich-based Max Planck Institute for Psychological 
Research. The decision to merge both centres of exper-
tise into one followed the development of psychological, 
neuroscientific,	 and	 neurological	 research	 increasingly	
being conducted closely together. The creation of the cen-
tre in Leipzig also established exceptional conditions for 
interdisciplinary behavioural and neurobiological research 
into human cognition.
The Institute currently consists of four departments: 
Neuropsychology, Neurology, Neurophysics, and 
Psychology. The Institute presently hosts a number of re-
search groups, amongst them four Max Planck Research 
Groups: “Adaptive Memory” (Roland Benoit), “Language 

Cycles” (Lars Meyer), “Pain Perception” (Falk Eippert), and 
“Vision and Computational Neuroscience” (Martin Hebart, 
whose group only just started its research). The Institute 
also hosts a Lise Meitner Research Group, “Cognition and 
Plasticity” (Gesa Hartwigsen), a Minerva Research Group, 
“EGG (Emotion and neuroimaGinG) Lab” (Julia Sacher), a 
Minerva Fast Track Group, “Milestones of Early Cognitive 
Development” (Charlotte Grosse Wiesmann, whose group 
only just started its research), and the Research Group 
“Stress and Family Health” (Veronika Engert).
Three methods and development groups facilitate scien-
tists’ access to the Institute’s state-of-the-art technical 
equipment while also conducting research into the meth-
odology of high-resolution and digital-resource methods: 
“Nuclear Magnetic Resonance”, “Brain Networks”, and 
“Databases and IT”.

Research foci
The general agenda of the MPI CBS is the investigation of 
the neural bases of human cognitive functions. These are 
explored by combined assessment of cognition, behav-
iour,	and	emotion,	and	by	using	neuroscientific	tools	such	
as magnetic resonance imaging (MRI), magneto-enceph-
alography (MEG), electro-encephalography (EEG), nonin-
vasive optical imaging, and various transcranial stimula-
tion techniques. Positron emission tomography (PET) is 
performed in collaboration with the University Hospital 
Leipzig, based upon a joint grant. Besides these neuro-
physiological tools, the integration of genetic, autonomic, 
and other biological markers (e.g. hormones, neuropep-
tides) has become increasingly important in the Institute’s 
research.
The Max Planck Institute for Human Cognitive and Brain 
Sciences in Leipzig provides an exciting framework for 
these topical and appealing theoretical domains, with 

the	 full	 gamut	 of	 cognitive	 and	 neuroscientific	method-
ology	available	under	one	 roof.	A	defining	characteristic	
of the Institute—and at the same time a basic principle 
of our research approach—is the dovetailing of research 
and technical development. The state-of-the-art techni-
cal equipment of the Institute both accentuates Leipzig’s 
long-standing tradition in psychological research and, ad-
ditionally, contributes to cutting-edge research within rel-
evant areas. Modern imaging techniques are increasingly 
being used in traditional psychological approaches. The 
Institute utilises and, most importantly, improves these 
techniques. Hosting the entire spectrum of techniques 
and approaches that are established within human cogni-
tive science and neurosciences, our Institute offers ideal 
conditions for its own and guest researchers.

Cooperation agreements and collaborations 
There has been a long-standing collaboration with Leipzig 
University.	The	first	cooperation	agreement	between	the	
Max Planck Society and Leipzig University, involving the 
(then) Max Planck Institute of Cognitive NeuroScience 
and Leipzig University, goes back to September 1994. In 
December 2006/January 2007, the Max Planck Society 

signed a cooperation agreement with Leipzig University 
and the University Hospital Leipzig with regard to the Max 
Planck Institute for Human Cognitive and Brain Sciences. 
The purpose of this agreement is to maintain and promote 
cooperation between the University, the Hospital, and the 
MPI	in	the	field	of	cognitive	neurology.	Above	all,	this	co-
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operation is implemented through: 1) the management of 
the Clinic of Cognitive Neurology as part of the hospital by 
a director of the Max Planck Institute who is also appoint-
ed	by	the	University;	2)	the	exchange	of	scientific	informa-
tion and experience; 3) the undertaking of joint research 
projects and cooperation in individual research ventures; 
4) the teaching and fostering of junior scientists; and 5) 
the mutual use of facilities. A new cooperation agreement 
between all Leipzig Max Planck Institutes and Leipzig 
University, further extending and strengthening existing 
collaborations, has just been signed.

In 2010, a collaboration agreement with the Institute 
of Cognitive Neuroscience (ICN) at UCL, UK, was 
signed, establishing a partnership between the ICN 
and the International Max Planck Research School on 
Neuroscience of Communication: Function, Structure, and 
Plasticity (IMPRS NeuroCom). The agreement includes 
collaborations in the organisation and running of the an-
nual IMPRS summer school and student exchange pro-
grammes, as well as collaborations between the ICN and 
the MPI CBS. IMPRS NeuroCom is an interdisciplinary PhD 
programme originally initiated by the Max Planck Institute 
for Human Cognitive and Brain Sciences. It is based at the 
Institute and Leipzig University, and also involves the Max 
Planck Institute for Evolutionary Anthropology, Leipzig, 
and the Institute of Cognitive Neuroscience at UCL, UK.

MPI CBS proudly houses the brand-new Max Planck 
School of Cognition (MPS Cog), a collaborative, interdis-
ciplinary and customised doctoral programme that of-
fers exceedingly bright doctoral candidates the tools to 
gain a superior grasp on the different methods and ap-
proaches	used	 in	 the	 rapidly	 evolving	 field	 of	 cognition.	
The programme, in which all directors are involved and 
that is headed by Arno Villringer, is characterised by the 
passion to better understand both human cognition and 
“mental phenomena” potentially occurring in non-biologi-
cal	systems	and	agents	(artificial	intelligence).	MPS	Cog	
bundles the best cognition researchers from different uni-
versities	and	scientific	organisations	in	a	unique	setting,	
also	involving	international	experts	in	the	field	like	Patrick 
Haggard at ICN, UCL.

All departments hold long-standing collaborations in 
the form of joint teaching and supervision projects with 
German and international universities and university hos-
pitals, as well as with non-university research institutions 
like Helmholtz, Fraunhofer, or Wellcome Trust. Further 
collaborative links exist in the shape of joint supervision 
and assessment of doctoral students between the Max 
Planck Institute for Human Cognitive and Brain Sciences 
and several international graduate programmes like the 
Berlin School of Mind and Brain at Humboldt University 
Berlin. 

Organisational structure 
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Language is a uniquely human capacity. Although human and non-human ani-
mals share a number of perceptual and cognitive abilities, only humans pos-
sess the ability to combine words into phrases and sentences.

The human language ability is supported by a fronto-temporal network of brain 
regions	connected	by	white	matter	fibre	tracts.	In	earlier	studies,	we	were	able	
to specify this network in the adult brain with respect to the function of its 
grey matter subparts, its white matter connectivity, as well as its functional 
connectivity. In particular, we found that BA 44 in the inferior frontal cortex is 
the hub for building structural hierarchies, which is at the core of human lan-
guage. This region crucially interacts with the posterior temporal cortex during 
sentence	comprehension.	We	showed	that	the	dorsal	white	matter	fibre	tract	
connecting BA 44 to the posterior temporal cortex is crucial for the ability to 
process	 syntactically	 complex	 sentences,	 evidenced	by	 the	 finding	 that	 the	
maturation	of	this	fibre	tract	during	development	predicts	children’s	ability	to	
comprehend such sentences. These data lead to the conclusion that particular 
grey and white matter structures in the human brain support the unique capac-
ity to process syntax—the core of any natural language.

In 2017, I published a book entitled Language in our Brain (MIT Press), which, 
based on our own data and those in the literature, proposed a model of the 
neural language network, specifying its functional and structural parameters 
in the adult brain. Moreover, a developmental model of the neural language 
network was put forward, describing the neurobiology of language develop-
ment as a shift from bottom-up processes supported by the temporal cortex 
to a specialisation of semantic and syntactic aspects of language processing 
in the left inferior frontal cortex. It is argued that this neural network for the 
uniquely human capacity of language follows a predetermined neurobiological 
programme with sensitive periods of neural plasticity.

Neurocognition of 
Language

Department of Neuro psychology
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In	order	to	shed	further	light	on	the	specifi	city	of	human	
syntax and its underlying brain structure, two novel empir-
ical	approaches	were	taken.	The	fi	rst	approach	focussed	
on	the	domain-specifi	city	of	language,	and	the	second	ap-
proach	aimed	at	uncovering	the	species-specifi	city	of	lan-
guage. The theoretical argument for this research strate-
gy was formulated in a recent paper (Friederici, 2018, Phil 
Trans R Soc B). Our empirical data gathered over the past 
few years strongly suggest that the language network is 
domain-specifi	c	and,	moreover,	species-specifi	c.	

Domain-specifi city. We investigated the domain-spec-
ifi	city	of	 the	 language	network	by	comparing	 the	neural	
language network to neural networks of several non-lan-
guage domains, which have been proposed to contain 
structural hierarchies similar to language. These domains 
are music, mathematics, and action. For none of these 
non-language	domains	did	we	fi	nd	a	direct	overlap	with	
the language network, neither with respect to the neuro-
functional nor the neurostructural anatomy. Thus, building 
syntactic	 hierarchies	 in	 language	 is	 specifi	c.	 It	 depends	
on BA 44 and its dorsal connection to the temporal cortex, 
fully matured in the adult human brain, but not well de-
veloped in the newborn prelinguistic human infant (Perani 
et	al.,	2011,	PNAS,	108,	16056–16061).	This	dorsal	fi	bre	
tract remains plastic through childhood, thereby allow-
ing its formation by language input (Skeide et al., 2016, 
Cereb Cortex, 26, 2127–2139). With its plasticity it stands 
in	clear	contrast	to	three	other	fi	bre	tracts	connecting	the	

frontal and temporal cortices, which are already consider-
ably mature and well myelinated at birth.

Species-specifi city. The second approach that we used to 
learn	about	the	specifi	city	of	this	uniquely	human	capacity	
focussed on the comparison of the language-related neu-
ral network in human and in non-human primates. It had 
been shown that non-human primates can learn auditory 
sequences following simple rule-based sequences (AB)n, 
but not the more complex AnBn rule-based sequences that 
lead to hierarchical dependencies, whereas humans learn 
both grammar types easily. In an fMRI study with adult 
humans, we demonstrated that the simple grammar acti-
vated the frontal operculum, a phylogenetically older cor-
tex than Broca’s area, whereas the more complex phrase 
structure grammar activated left Broca’s area, in particu-
lar BA 44 (Friederici et al., 2006, PNAS, 103, 2458–2463). 
Related white matter probabilistic analyses indicated that 
the frontal operculum is connected to the temporal cortex 
by a ventral pathway, while BA 44, relevant for hierarchical 
syntax, is connected to the temporal cortex via a dorsal 
pathway. The dorsal pathway to BA 44 is weak in non-hu-
man primates (see 1.2.7) and not yet well developed in 
prelinguistic infants, that is, in those who are incapable of 
syntax (Perani et al., 2011). These data suggest that the 
ability to process hierarchically structured sequences in 
language as well as its neural bases develops late in phy-
logeny and ontogeny.

Figure	 1	 	 Schematised	 white	 matter	 fi	bre	
tracts in phylogeny and ontogeny. Schematic 
view of ontogeny (A, B) and of phylogeny (B, 
D). (A) Human infants. (B) Human adults. (D) 
Adult	Macaques.	Dorsal	fi	bre	 tracts	 (purple,	
blue),	 ventral	 fi	bre	 tract	 (orange,	 red).	 (C)	
Core	 language	 fi	bre	 tracts	 in	 the	 adult	 hu-
man brain. There are two dorsally located 
pathways and two ventrally located path-
ways. The dorsal pathway connecting the 
dorsal premotor cortex (BA 6) with the pos-
terior temporal cortex involves the superior 
longitudinal fasciculus (SLF) (blue); the dor-
sal pathway connecting Brodmann area (BA) 
44 with the posterior STG involves the arcu-
ate fasciculus (purple). The ventral pathway 
connecting the inferior frontal cortex—that is, 
BA 45/47 and others—with the temporal cor-
tex involves the inferior fronto-occipital fas-
ciculus (IFOF) (orange); the ventral pathway 
connecting the anterior inferior frontal cor-
tex—that is, the frontal operculum (FOP) with 
the anterior superior temporal gyrus (aSTG) 
involves the uncinate fasciculus (red). (B) 
and (D) adapted from Rilling et al., 2008, Nat 
Neurosci, 11, 426–428. 
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Over	 the	 past	 few	 years,	 we	 have	 specified	 various	 as-
pects of the fronto-temporal language network in human 
adults	and,	moreover,	investigated	its	domain-specificity.	
The ability to combine elements into hierarchies is a ba-
sic mechanism of language, called Merge in linguistic the-
ory. In a previous meta-analysis, we demonstrated that 
Broca’s area is the crucial region supporting this opera-
tion. A recent functional MRI study showed that Broca’s 
subregions BA 44 and BA 45 hold responsibility for dif-
ferent phrase types (1.1.1). Using a TMS–EEG setting to 
investigate the temporal dynamics during sentence pro-
cessing, we found that the inferior frontal cortex is active 
earlier than the superior temporal cortex (1.1.2). We fur-
thermore examined the neural dynamics of hierarchical 
phrase	structure	building	in	Chinese,	finding	that	network	
modulations emerged from BA 44 to the posterior tem-
poral cortex and involved BA 45 once lexico-semantic as-
pects came into play (1.1.3). A functional MRI study on 
the role of prosody during sentence comprehension re-
vealed a left hemispheric activation in the inferior frontal 
gyrus whenever intonation was crucial for syntactic pro-
cessing	(1.1.4).	These	data	clearly	confirm	the	primacy	of	
BA 44 in the left hemisphere in syntactic processing dur-
ing sentence comprehension.

Investigating hierarchy processing in different non-lan-
guage domains, we found that hierarchical processing in 
music revealed activation in the right inferior frontal gyrus, 
suggesting domain-selective neural populations for mu-
sic compared to language (1.1.5). Within the domain of 
mathematics,	we	observed	that	the	dorsal	white	matter	fi-
bre tracts and cortico-thalamic tracts varied in streamline 
density as a function of mathematical expertise (1.1.6). 
For the domain of action, a meta-analysis revealed that 
there is an involvement of posterior BA 44 for action com-
pared to language, which recruits anterior BA 44 (1.1.7). 
Together, these data suggest that the neural network sup-
porting hierarchical processes within the language do-
main differs from that in non-language domains.
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Classifi cation maps for abstract phrasal combination in Broca’s area
 Schell, M. 1,    Friederici, A. D. 2, &  Zaccarella, E. 2 
1 Heidelberg University Hospital, Germany 
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 

When processing connected speech, our linguistic combi-
natorial capacity must be flexible enough to make sense 
out	of	 infi	nite	word	combinations	from	the	 linguistic	en-
vironment. Linguistic combination is however not an all-
with-all process: words do not randomly combine but 
are constrained by syntactic rules based on word-cate-
gory relationships. How different word combinations are 
recognised by the human brain, depending on the word 
category entering the computation, remains largely un-
known, although this is the necessary condition for the 
combinatorial unboundedness to apply. Here we applied 
multi-voxel pattern analysis (MVPA) to functional mag-
netic resonance imaging data of healthy subjects, actively 

listening to simple, two-word, phrasal contexts in German. 
The phrases we used consisted of a noun (boat), which 
could either form a noun phrase (NP) with another con-
tent word, i.e. as the adjective blue in blue boat, or form a 
determiner phrase (DP) with a function word, i.e. the de-
terminer this in this boat. We found that neural popula-
tions classifying simple phrasal combinations in Broca’s 
area, a high-order structure-building hub of the linguistic 
system in the inferior frontal gyrus (IFG), are not uniformly 
distributed, but rather sensitive to structurally distinct sub-
regions within the area, depending on the word categories 
forming the phrase. Namely, the information patterns for 
the NP adjective-noun combination were localised in the 
anterior part (BA 45), given the additional semantic speci-
fi	city	 of	 the	 adjective,	 whereas	 the	 DP	 determiner-noun	
combination was localised in its posterior part (BA 44), 
as	a	function	of	specifi	c	syntactic	load.	Our	fi	ndings	pro-
vide preliminary evidence for neuronal reliance on word-
category relationships when building linguistic structures. 
They support the hypothesis that language faculty must 
consist of some neural computation capturing universal 
combinatorial power on one side, and particular categori-
cal restrictions on the other.

1.1.1

Figure	1.1.1	 	PHRASE	classifi	cation	patterns.	 (A)	Weight	maps:	NP	
vs.	DP	 in	Broca’s	 area.	The	most	 discriminative	5 %,	 10 %	and	15 %	
of	 classifi	er	 weights	 from	 the	 classifi	er	 trained	 to	 discriminate	 DP	
vs. NP, along the PHRASE factor in Broca’s area. (B) NP vs. DP voxel 
distribution	 in	Broca’s	area.	PHRASE	classifi	cation	 χ²-tests	 showed	
signifi	cantly	distinct	distributional	patterns	in	Broca’s	area,	with	vox-
els identifying determiner-noun combinations being strongly located 
in BA 44, while voxels classifying adjective-noun combinations being 
conversely located in BA 45. * p < 0.05; *** p < 0.001.
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Contributions of left frontal and temporal cortex to sentence 
comprehension: Evidence from simultaneous TMS-EEG
  Kroczek, L. O. H  1,  Gunter, T. C.  1,   Rysop, A. U.  1,   Friederici, A. D.  1, &  Hartwigsen, G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Sentence comprehension requires the rapid analysis of 
semantic and syntactic information. These processes 
are supported by a left hemispheric dominant fronto-
temporal network, including the left posterior inferior fron-
tal gyrus (pIFG, BA 44) and posterior superior temporal 
gyrus/sulcus (pSTG/STS). Previous electroencephalog-
raphy (EEG) studies have associated semantic expectan-
cy within a sentence with a modulation of the N400 and 

syntactic gender violations with increases in the LAN and 
P600. Here, we combined focal perturbations of neural 
activity by means of short bursts of transcranial magnetic 
stimulation (TMS) with simultaneous EEG recordings to 
probe the functional relevance of pIFG (BA 44) and pSTG/
STS for sentence comprehension. We applied 10 Hz TMS 
bursts of three pulses at verb onset during auditory pres-
entation of short sentences. Verb-based semantic expec-

1.1.2



21

Functional Neuroanatomy of the Language Network

tancy and article-based syntactic gender requirement 
were	manipulated	for	the	fi	nal	noun	of	the	sentence.	We	
did	not	fi	nd	any	TMS	effect	at	 the	noun.	However,	TMS	
had a short-lasting impact at the mid-sentence verb that 
differed	 for	 the	 two	 stimulation	 sites.	 Specifi	cally,	 TMS	
over	pIFG	 (BA	44)	 elicited	a	 frontal	 positivity	 in	 the	fi	rst	
200 ms post verb onset, whereas TMS over pSTG/STS 
was limited to a parietal negativity at 200–400 ms post 

verb onset. This indicates that during verb processing in 
sentential context, frontal brain areas play an earlier role 
than temporal areas in predicting the upcoming noun. The 
short-lived perturbation effects at the mid-sentence verb 
suggest a high degree of online compensation within the 
language system, since the sentence processing of the 
fi	nal	noun	was	unaffected.

Universal neural basis of structure building evidenced by network 
modulations emerging from Broca’s area
 Wu, C.-Y. 1,  Zaccarella, E. 1, &    Friederici, A. D. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The basic steps in constructing language involve binding 
words of different categories into a hierarchical structures. 
To what extent these steps are universal or differ across 
languages is an open issue. Here we examine the neu-
ral dynamics of phrase-structure building in Chinese—a 
language that, in contrast to other languages, heavily de-
pends on contextual semantic information. We used func-
tional magnetic resonance imaging and dynamic causal 
modelling to identify the relevant brain regions and their 
dynamic relations. Language stimuli consisted of syntax-
driving	determiners,	semantic-embedded	classifi	ers,	and	
nonverbal symbols making up two-component sequenc-
es manipulated by the factors structure (phrase/list) and 
number of words (2-word/1-word). Processing phrases 
compared with word lists elicited greater activation in the 
anterior part of Broca’s area, Brodmann area (BA) 45, and 

the left posterior superior/middle temporal gyri (pSTG/
pMTG), while processing two words against one word 
led to stronger involvement of the left BA 45, BA 44, and 
insula. Differential network modulations emerging from 
subparts of Broca’s area revealed that phrasal construc-
tion, in particular, highly modulated the direct connection 
from BA 44 to left pMTG, suggesting BA 44’s primary role 
in phrase-structure building. Conversely, the involvement 
of BA 45 rather appears sensitive to the reliance on lexico-
semantic information in Chinese. Against the background 
of	previous	fi	ndings	from	other	languages,	the	present	re-
sults indicate that phrase-structure building has a univer-
sal neural basis within the left fronto-temporal network. 
Moreover, they provide evidence demonstrating that the 
structure-building network may be modulated by lan-
guage-specifi	c	characteristics.

1.1.3
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Figure 1.1.2  (A) Effects of the different 
TMS conditions on verb processing. ERP 
effects of predictability at the verb position. 
ERPs are shown for all stimulation sites 
(sham, pIFG, pSTG/STS). (B) Early and late 
TMS effects at the verb position. Difference 
of high predictive and low predictive verbs 
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Intonation guides sentence processing in the left inferior frontal gyrus
van der Burght, C. L. 1, Goucha, T. 1, Friederici, A. D. 1, Kreitewolf, J.  2, & Hartwigsen, G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Department of Psychology, University of Lübeck, Germany

Speech prosody, the variation in sentence melody and 
rhythm, plays a crucial role in sentence comprehension. 
Specifically,	 changes	 in	 intonational	 pitch	 along	 a	 sen-
tence can affect our understanding of who did what to 
whom. To date, it remains unclear how the brain process-
es this particular use of intonation and which brain re-
gions are involved. In particular, one central matter of de-
bate concerns the lateralisation of intonation processing. 
To study the role of intonation in sentence comprehen-
sion, we designed a functional magnetic resonance imag-
ing experiment in which participants listened to spoken 
sentences. Critically, the interpretation of these sentences 
depended on either intonational or grammatical cues. Our 
results showed stronger functional activity in the left in-
ferior frontal gyrus (IFG) when the intonational cue was 
crucial for sentence comprehension compared to when 

it was not. When a grammatical cue was instead crucial 
for sentence comprehension, we found involvement of an 
overlapping region in the left IFG, as well as in a posterior 
temporal region. A further analysis revealed that the later-
alisation of intonation processing depends on its role in 
syntactic processing: Activity in the IFG was lateralised to 
the left hemisphere when intonation was the only source 
of information to comprehend the sentence. In contrast, 
activity in the IFG was right-lateralised when intonation 
did not contribute to sentence comprehension. Together, 
these results emphasise the key role of the left IFG in sen-
tence comprehension, showing the importance of this 
region when intonation establishes sentence structure. 
Furthermore, our results provide evidence for the theory 
that the lateralisation of prosodic processing is modulat-
ed by its linguistic role.

1.1.4

Figure 1.1.3  In (A), the activation clusters 
in	warm	colours	show	significant	effects	of	
STRUCTURE (greater for phrase than for list 
condition), and the clusters in cool colours 
show	significant	effects	of	WORDS	(greater	
for 2-word than for 1-word condition). The 
peak coordinates of the left BA 44, BA 45, 
and pMTG were used for volumes-of-inter-
est	(VOI)	specification	in	the	DCM	analysis.	
(B) Modulations of the winning family had 
driving inputs on both the left BA 44 and BA 
45. The phrase conditions had greater mod-
ulation effects on the connection from left 
BA 44 to left pMTG as compared with the list 
conditions (*p < .05).

Figure 1.1.4  Lateralisation analysis show-
ing functional contrasts of interest com-
pared to their left–right flipped equivalent. 
(A) Lateralised functional activity evoked 
by processing of sentence structure 
guided by a prosodic cue. (B) Lateralised 
functional activity evoked by processing a 
sentence structure in which the prosodic 
cue is superfluous. All comparisons are 
thresholded on the cluster level at p < .05, 
FWE-corrected. BL stands for baseline.
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The right inferior frontal gyrus processes nested non-local dependencies 
in music
  Cheung, V. K. M. 1,  Meyer, L. 1,    Friederici, A. D. 1, &  Koelsch, S. 1, 2
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Department of Biological and Medical Psychology, University of Bergen, Norway

Complex auditory sequences known as music have often 
been described as hierarchically structured. This permits 
the existence of non-local dependencies, which relate el-
ements of a sequence beyond their temporal sequential 
order. Previous studies in music have reported differential 
activity in the inferior frontal gyrus (IFG) when comparing 
regular and irregular chord transitions based on theories 
in Western tonal harmony. However, it is unclear if the ob-
served activity reflects the interpretation of hierarchical 
structure as the effects are confounded by local irregu-
larity. Using functional magnetic resonance imaging, we 
found that violations to non-local dependencies in nested 

sequences of three-tone musical motifs, in musicians, 
elicited increased activity in the right IFG. This is in con-
trast to similar studies in language, which typically report 
the left IFG in processing grammatical syntax. Effects of 
increasing auditory working memory demands are, more-
over, reflected by distributed activity in frontal and parietal 
regions. Our study therefore demonstrates the role of the 
right IFG in processing non-local dependencies in music, 
and suggests that hierarchical processing in different 
cognitive domains relies on similar mechanisms that are 
subserved by domain-selective neuronal subpopulations.

1.1.5
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Figure 1.1.5  (A) Whole-brain activations for main effects of grammaticality and level of embedding (LoE) on discriminating the grammaticality 
of	nested	musical	sequences.	The	contrast	UNGRAMMATICAL	>	GRAMMATICAL	yielded	signifi	cant	clusters	(red)	in	the	inferior	frontal	gyrus,	
middle frontal gyrus, posterior middle temporal gyrus in the right hemisphere, bilateral anterior insular cortices, and pre-supplementary motor 
area.	Contrasting	sequences	with	TWO-LoE	>	ONE-LoE	yielded	signifi	cant	clusters	(blue)	bilaterally	in	the	middle	frontal	gyrus	and	inferior	pari-
etal lobule. Reported clusters were corrected for multiple comparisons voxel-wise at a threshold of p < 0.05. (B) Psychophysiological interaction 
(PPI)	analysis.	Using	a	refi	ned	model,	activity	was	observed	in	the	right	pars	opercularis,	right	pars	triangularis,	and	bilateral	anterior	insular	cor-
tices (AIC) for the contrast UNGRAMMATICAL > GRAMMATICAL (seed regions in red), and the right middle frontal gyrus (MFG) and right inferior 
parietal	lobule	for	the	contrast	TWO-LoE	>	ONE-LoE	(seed	regions	in	blue).	Dotted	lines	indicate	signifi	cantly	increased	functional	connectivity	
between regions for UNGRAMMATICAL compared to GRAMMATICAL sequences. (C) Positive correlation between sensitivity in discriminating 
the grammaticality of nested musical sequences and increase in task modulated functional connectivity (r = 0.55, p = 0.03). The shaded region 
shows	the	95 %	confi	dence	band	of	the	linear	regression	line.

Mathematical expertise modulates the architecture of dorsal and cortico-
thalamic white matter tracts
 Jeon, H.-A. 1,  Kuhl, U. 2, &    Friederici, A. D. 2
1 Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The white matter brain structures for language have been 
specifi	ed	to	involve	dorsal	and	ventral	pathways,	with	the	
dorsal	 pathway	 identifi	ed	 to	 be	 crucial	 for	 the	 syntactic	
expertise. Here, we analysed the white matter brain struc-
ture of mathematicians versus non-mathematicians us-
ing probabilistic tractography. Having mathematicians 

and non-mathematicians as participant groups enabled 
us	to	directly	compare	profi	les	of	structural	connectivity	
arising from individual levels of expertise in mathematics. 
Tracking from functional seed regions activated during 
the processing of complex arithmetic formulas revealed 
an	involvement	of	various	fi	bre	bundles	such	as	the	infe-

1.1.6
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rior fronto-occipital fascicle, arcuate fasciculus/superior 
longitudinal fasciculus (AF/SLF), cross-hemispheric con-
nections of frontal lobe areas through the corpus callo-
sum, and cortico-subcortical connectivity via the bilateral 
thalamic radiation. With the aim of investigating expertise-
dependent structural connectivity, the streamline density 
was	correlated	with	the	level	of	expertise,	defi	ned	by	auto-
maticity of processing complex mathematics. The results 

showed that structural integrity of the AF/SLF was high-
er in individuals with higher automaticity, while stronger 
cortico-thalamic connectivity was associated with lower 
levels of automaticity. Therefore, we suggest that exper-
tise in the domain of mathematics is reflected in plastic 
changes of the brain’s white matter structure, possibly re-
flecting a general principle of cognitive expertise.

The topographical organisation of motor processing: An ALE meta-
analysis on six action domains and the relevance of Broca’s region
 Papitto, G. 1,   Friederici, A. D. 1, &  Zaccarella, E. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Action as a cognitive domain has repeatedly been dis-
cussed to involve left Broca’s area. Action, however, is a 
cover term used to refer to a large set of motor processes 
differing	in	domain-specifi	cities	(e.g.	execution	or	obser-
vation). Here we review neuroimaging evidence on action 

processing (N = 416; Subjects = 5912) using quantitative 
activation likelihood estimation (ALE) and meta-analytic 
connectivity modelling (MACM) approaches to delineate 
the	functional	specifi	cities	of	six	domains:	(1)	action	ex-
ecution, (2) action imitation, (3) motor imagery, (4) action 

1.1.7

Figure	1.1.6		Clusters	of	signifi	cant	negative	and	positive	correlations	
between streamline density and CVRT scores across mathemati-
cians and non-mathematicians. (A) Seeding in the left PrCG (green) 
showed a negative correlation between CVRT and streamline density, 
with its peak (blue) being located in the parietal portion of the AF/SLF 
(violet). (B) Seeding in the right mPMC/ACC (green) yielded a positive 
correlation between CVRT and streamline density, with its peak (red) 
being	positioned	specifi	cally	in	the	thalamus	(a	part	of	yellow	tract).	
Reported clusters are size corrected at p < 0.05 and Bonferroni cor-
rected for the number of seed regions. (AF/SLF, arcuate fasciculus/ 
superior longitudinal fasciculus).
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Figure	 1.1.7.1	 	 Overview	 of	 signifi	cant	 clusters	 resulting	 from	 the	 different	 domains.	 (A)	 Action	 execution;	 (B)	 Action	 Imitation;	 (C)	Motor	
Imagery; (D) Action Observation; (E) Motor Learning; (F) Motor Preparation. Coordinates are in the MNI space.
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observation, (5) motor learning, and (6) motor prepara-
tion. Our results show distinct functional patterns for the 
different domains with convergence in posterior BA 44 
(pBA 44) for execution, imitation, and imagery process-
ing. The functional connectivity network seeding in the 
motor-based localised cluster of pBA 44 differs from the 
connectivity network seeding in the (language-related) 
anterior BA 44, suggesting that these two networks sub-
serve distinct cognitive functions. We propose that the 
motor-related network encompassing pBA 44 is recruited 
in	specific	action	domains	requiring	a	mental	representa-
tion of the action itself.

Figure	 1.1.7.2	 	 Overview	 of	 significant	 clusters	 resulting	 from	 the	
MACM analysis. Two co-activation patterns were obtained from dif-
ferent subregions centred within BA 44, one anterior (aBA 44) and one 
posterior (pBA 44). Co-activation patterns resulting from aBA 44 are 
contrasted with patterns co-activated by pBA 44 (blue); co-activation 
patterns resulting from pBA 44 are contrasted with patterns co-acti-
vated by aBA 44 (red). Coordinates are in the MNI space.
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The brain’s structure matures as language abilities de-
velop. It is an open question how grey and white matter 
changes correlate within the language network during de-
velopment. Investigating this interrelationship, we found 
a high overlap of measures of the cortical surface area 
and the ongoing myelination of white matter connections 
(1.2.1). The investigation of the relation between corti-
cal changes within the language network and language 
behaviour revealed that increased covariance of cortical 
thickness between left frontal and temporal regions with-
in the language network was associated with advanced 
syntactic processing abilities (1.2.2).
As a precursor of syntactic processing, the processing of 
non-adjacent dependencies in auditory sequences has 
been considered as mandatory. We investigated the pro-
cessing of non-adjacent dependencies in children aged 
2 and 3 years, as during this age period the prefrontal 
cortex matures quite dramatically. When testing syllable 
sequences and tone sequences using near-infrared spec-
troscopy (NIRS), we observed a difference between the 
two domains. For linguistic sequences, but not for tone 
sequences, we found increased activation in two-year-
olds,	 suggesting	 an	 early	 domain-specific	 sensitivity	 to	
language (1.2.3).
Clear age-related periods of cognitive processes have also 
been claimed for a non-language domain, namely Theory-

of-Mind (ToM). The respective experimental tasks are ei-
ther explicit (involving verbal instruction) or implicit (no 
verbal instruction). Two-year-old children can solve the 
latter, but not the former task raising the question of the 
relation between ToM and language. Our structural brain 
data show that implicit and explicit ToM tasks involve dif-
ferent non-language cortical regions suggesting different 
underlying processes for implicit and explicit ToM, which 
are both unrelated to language (1.2.4).
Language acquisition builds on various aspects. Learning 
sequences and words is one aspect. Another aspect is 
recollection, that is, the ability to remember what has been 
learnt. In a series of studies we investigated these two as-
pects, measuring learning in one session and re collection 
in a second session, which was conducted after a nap. In 
sequence learning studies on word learning we showed 
that sleep enhances the formation of word meanings in 
young infants (1.2.5) and even helps children to generalise 
semantic knowledge in memory (1.2.6).
Lastly, we investigated the evolution of the neurobiologi-
cal basis of the language network and attempted to spec-
ify the particular brain structures that enable human lan-
guage. Preliminary data again point towards a special role 
of the dorsal pathway targeting BA 44 (1.2.7).
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The concurrence of cortical surface area expansion and white matter 
myelination in human brain development
 Cafi	ero,	R. 1,  Brauer, J. 1,   Anwander, A. 1, &   Friederici, A. D. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The human brain undergoes dramatic structural changes 
during childhood that co-occur with behavioural develop-
ment. These age-related changes are documented for the 
brain’s grey matter and white matter. However, their inter-
relation is largely unknown. In this study, we investigated 
age-related effects in cortical thickness (CT) and cortical 
surface area (SA) as parts of the grey matter volume as 
well as age effects in T1 relaxation times in the white mat-
ter. Data from N = 170 children between the ages of 3 and 
7 years contributed to the sample. The general pattern 
of correlations between age and white matter properties 
was widespread, suggesting ongoing myelination with 
the strongest effects in the superior longitudinal fascicle, 
inferior longitudinal fascicle, inferior fronto-occipital fasci-
cle, and corona radiata. Tracing the connections that con-

tribute	 to	 the	signifi	cant	age	effects,	back	 to	 the	cortex,	
allowed us to obtain a more reliable representation of the 
cortical regions whose connections display the decrease 
in T1 values with increasing age. This analysis revealed 
the strong involvement of frontal, temporal, and parietal 
associative cortices, together with the medial wall and the 
precuneus. The correlation between SA increase and age 
showed a similar pattern. 
We found a high spatial overlap of age-related correlations 
between SA and T1 relaxation times of the corresponding 
white matter connections, but no such relation between 
SA and CT. The results indicate that during childhood the 
developmental expansion of the cortical surface is closely 
associated with an age-related increase of white matter 
fi	bre	connections	terminating	at	the	cortical	surface.

1.2.1

Figure	1.2.1		(A)	Visualisation	of	signifi	cant	effects	of	age	on	cortical	surface	area	(blue)	and	on	myelin	content	(T1	values)	(yellow)	on	the	same	
map. A substantial overlap between these two maps is apparent (green). (B) Z scores of the per-vertex relationship between surface area expan-
sion	and	the	distribution	of	myelinating	fi	bres’	termination	points.

The emergence of long-range language network structural covariance and 
language abilities
 Qi, T. 1,  Schaadt, G. 1,  Cafi	ero,	R. 1,  Skeide, M. A. 1,  Brauer, J. 1, &   Friederici, A. D.
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Language skills increase as the brain matures. Language 
processing, especially the comprehension of syntacti-
cally complex sentences, is supported by a brain network 
involving functional interactions between left inferior 
frontal and left temporal regions in the adult brain, with 
reduced functional interactions in children. Here, we ex-
amined the grey matter covariance of the cortical thick-
ness network relevant for syntactic processing in relation 
to language abilities in preschool children (i.e. 5-year-olds) 
and analysed the developmental changes of the cortical 

thickness covariance cross-sectionally by comparing pre-
school children, school age children, and adults. In addi-
tion, to demonstrate the agreement of cortical thickness 
covariance and white matter connectivity, tractography 
analyses were performed. Covariance of language-rel-
evant seeds in preschoolers was strongest in contralat-
eral homologous regions. However, a more adult-like sig-
nifi	cant	cortical	thickness	covariance	between	left	frontal	
and left temporal regions was observed in preschoolers 
with advanced syntactic language abilities. By compar-

1.2.2

A Surface Area- Age relationship with T1 values- Age visitation map: Overlap
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ing the three age groups, we were able to show that the 
cortical thickness covariance pattern from the language-
associated seeds develops progressively, from restricted 
brain regions in preschoolers to widely-distributed regions 
in adults. In addition, our results suggest that the cortical 
thickness covariance difference of the left inferior frontal 
gyrus to superior temporal gyrus/sulcus between pre-
schoolers and adults is accompanied by distinctions in 

the white matter tracts linking these two areas, with more 
mature white matter in the arcuate fasciculus in adults 
compared	 to	 preschoolers.	 These	 fi	ndings	 provide	 ana-
tomical evidence of developmental changes in language, 
both from the perspective of grey matter structure covari-
ation within the language network and white matter ma-
turity as the anatomical substrate for the structural co-
variance.

Figure 1.2.2  Developmental differences in cortical thickness covariance maps seeding from the left inferior frontal gyrus (IFG) across age 
groups. (A) Cortical thickness covariance maps seeding from the left IFG (depicted in grey) in school-age children (top) and adults (bottom). (B) 
Developmental	differences	of	the	cortical	thickness	covariance	seeding	from	the	left	IFG	across	the	three	age	groups.	Signifi	cant	differences	
were observed in the left temporal regions (p = 0.006) and right precentral gyrus (p = 0.043, FWE-corrected). (C) Covariance of the left IFG seed 
and left temporal regions as target (peak value adjusted for model) for all three age groups (t (48) = 4.45, r = 0.54, p < 0.001, for adults, in black; 
t (47) = 1.98, r = 0.28, p = 0.053, for school age children, in blue; t (60)= –1.56, r = –0.20, p = 0.125, for preschool children, in red).

A School-age children B Comparison

C

0 0.05
p values

2.4

2.4

2.8

2.8

3.2

3.2

Seed left IFG

Adults
School-age children
Preschoolers

Ta
rg

et
 re

gi
on

3.6

Adults

Linguistic and non-linguistic non-adjacent dependency learning in early 
development
 van der Kant, A. 1,  Männel, C. 2,  3,  Paul, M. 2, 4,   Friederici, A. D. 2, 4,  Höhle, B. 1, &  Wartenburger, I. 1 
1 University of Potsdam, Germany
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Medical Faculty, Leipzig University, Germany
4 Berlin School of Mind and Brain, Humboldt University Berlin, Germany

Non-adjacent dependencies (NADs) are important build-
ing blocks for the hierarchical structure of language, and 
extracting them from the input is a fundamental part of 
language acquisition. Event-related potential (ERP) stud-
ies revealed that 4-month-old infants can learn NADs 
by merely listening, while adults need an active task. 
Moreover, inhibition of the adult prefrontal cortex led to 
infant-like ERP patterns in NAD processing. Recent evi-
dence suggests a developmental shift from implicit NAD 
learning in infants to more controlled NAD learning af-
ter the age of two years. This shift might potentially be 
caused by prefrontal cortex development. The present 
study aimed to specify which brain regions are involved in 
this developmental shift and whether this shift extends to 
NAD learning in the non-linguistic domain. In two experi-

ments, 2- and 3-year-old German-learning children were 
familiarised with either Italian sentences or tone sequen-
ces containing NADs and subsequently tested with NAD 
violations (incorrect) while functional near-infrared spec-
troscopy data were recorded. Results showed increased 
hemodynamic responses related to the detection of lin-
guistic NAD violations in the left temporal and inferior 
frontal regions in 2-year-old children, but no increased re-
sponses in 3-year-olds. A different developmental trajec-
tory was found for non-linguistic NADs, where 3-year-old, 
but not 2-year-old, children showed evidence of the detec-
tion of non-linguistic NAD violations although in different 
brain regions. These results point to distinct mechanisms 
underlying NAD learning in the linguistic and non-linguis-
tic domain.

1.2.3
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Implicit and explicit Theory-of-Mind are dissociated in development
Grosse Wiesmann, C. 1, Friederici, A. D. 1, Singer, T. 2, & Steinbeis, N. 3
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2  Social Neuroscience Lab, Max Planck Society, Berlin, Germany
3 Department of Developmental and Educational Psychology, Universiteit Leiden, NL

1.2.4

2.0

2.5

3.0

3.5

4.0

4.5

.4

.6

.8

1.0

1.2
1.4

Implicit ToM Score
–.4 –.2 .0 .2 .4 .6

Implicit ToM Score
–.4 –.2 .0 .2 .4 .6

Su
rf

ac
e 

ar
ea

 
at

 p
ea

k 
(m

m
2 )

Correlation of implicit ToM with surface area
Correlation of implicit ToM with cortical thickness

Co
rt

ic
al

 th
ic

kn
es

s 
at

 p
ea

k 
(m

m
)

Su
rf

ac
e 

ar
ea

 
at

 p
ea

k 
(m

m
2 )

Su
rf

ac
e 

ar
ea

 
at

 p
ea

k 
(m

m
2 )

0.5

0.8

1.0

1.3

1.5

Explicit ToM Score
–1.0 0.0 1.0 2.0

Explicit ToM Score
–1.0 0.0 1.0 2.0

Explicit ToM Score
–1.0 0.0 1.0 2.0

Explicit ToM Score
–1.0 0.0 1.0 2.0

Co
rt

ic
al

 th
ic

kn
es

s 
at

 p
ea

k 
(m

m
)

Co
rt

ic
al

 th
ic

kn
es

s 
at

 p
ea

k 
(m

m
)

0.5

0.4

0.8

1.0

1.2

1.4

3.0

3.5

4.0

2.4

2.8

3.2

3.6

Correlation of explicit ToM with surface area
Correlation of explicit ToM with cortical thickness
ROIs from meta-analysis on belief reasoning (by Schurz et al., 2014, Neurosci Biobehav Rev, 42, 9–34)

B

A

C2

C1

E

D

Figure 1.2.4  Distinct and independent brain regions were associated with success on the explicit (blue) and the implicit ToM tasks (red/orange). 
While the explicit ToM tasks were related to cortical thickness and surface area in the classical ToM network (precuneus, posterior temporal 
and temporo-parietal regions in blue), the implicit ToM task was related with the supramarginal gyrus and dorsal precuneus (in red/orange).
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Figure 1.2.3  Mean time courses of oxygen-
ated (red) and de-oxygenated (blue) haemo-
globin regions of interest (ROIs), showing a 
significant	difference	between	two	conditions:	
blocks containing incorrect and correct items 
(solid line) and blocks containing only correct 
items (dotted line) (upper row: 2-year-olds, 
lower row: 3-year-olds). (A) Linguistic experi-
ment, and (B) non-linguistic experiment. The 
x-axis represents time; stimulation started at 
0 sec and lasted 18 sec. LH: left hemisphere,  
RH: right hemisphere, IF: inferior frontal ROI. 
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Human interaction crucially relies on our ability to infer 
what other people know and think. Known as Theory of 
Mind (ToM), this ability has long been argued to be unique-
ly human and emerge around the age of 4 years. This de-
velopmental dogma was based on traditional explicit ToM 
tasks in which children were explicitly asked where anoth-
er person with a false belief about the location of an ob-
ject would search for this object. Recently, however, this 
dogma has radically been questioned by a set of non-ver-
bal implicit ToM tests passed by infants younger than 2 
years	of	age.	These	findings	have	caused	one	of	the	most	
controversial debates of current developmental psychol-
ogy: How do infants in their second year of life solve these 
implicit tasks, and why do they only pass the traditional 
explicit ToM tasks several years later in development? To 
address this, we related 3- and 4-year-olds’ performance 
on implicit and explicit ToM tasks with each other, as well 
as with markers of cortical brain structure measured with 

MRI. This showed that while different explicit ToM tasks 
were strongly correlated with each other, there was no re-
lation between implicit and explicit ToM tasks. This dis-
sociation	was	confirmed	on	the	neural	level.	Explicit	ToM	
performance was supported by cortical surface area and 
thickness of the precuneus and temporoparietal junction, 
classically involved in ToM in adults, whereas implicit ToM 
performance was supported by the cortical structure of 
the supramarginal gyrus, involved in action observation 
and	visual	perspective	 taking.	These	findings	show	 that	
implicit and explicit ToM are supported by different brain 
structures suggesting the involvement of different cog-
nitive processes. While mature adult-like ToM reasoning 
emerges around the age of 4 years, as measured by the 
traditional explicit ToM tasks, non-verbal ToM tasks seem 
to rely on a different earlier-developing cognitive process. 

The sleeping infant brain anticipates development
Friedrich, M. 1, 2, Wilhelm, I.  3, 4, Mölle, M. 5, Born, J. 6, & Friederici, A. D. 2
1 Institute of Psychology, Humboldt University Berlin, Germany
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry, Zürich, Switzerland
4 Department of Psychology, University of Zürich, Switzerland
5 Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Germany
6 Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tübingen, Germany

Earlier studies have shown that from the age of 3 months, 
infants learn relations between objects and co-occurring 
words.	 These	 very	 first	 representations	 of	 object–word	
pairings in infant memory are considered as non-symbol-
ic	protowords,	comprising	specific	visual–auditory	asso-
ciations	that	can	already	be	formed	in	the	first	months	of	
life. Genuine words that refer to semantic long-term mem-
ory have not been evidenced before the age of 9 months. 
Sleep is known to facilitate the reorganisation of memo-
ries, but its impact on the perceptual-to-semantic trend in 
early development is unknown. Here, we explored the for-

mation of word meanings in 6- to 8-month-old infants and 
its reorganisation during the course of sleep. Infants were 
exposed to new words as labels for new object categories. 
In the memory test about an hour later, generalisation to 
novel category exemplars was tested. In infants who took 
a short nap during the retention period, a brain response 
similar to 3-month-olds was observed, indicating generali-
sations based on early developing perceptual-associative 
memory. In the infants who napped longer, a semantic 
priming effect revealed the formation of genuine words. 
The perceptual-to-semantic shift in memory was related 

1.2.5

Figure 1.2.5  Category–word pairing effects during learning and memory testing. The infant ERPs in response to words paired with novel cate-
gory exemplars. Following standard analyses of the N400 priming effect, we calculated all memory effects as the difference between unprimed 
and primed conditions (i.e. inconsistent–consistent and incorrect–correct); negativity is plotted upward. (A) Late negativity in the memory test 
of the short-nap group, indicating the presence of less developed perceptual-associative memory for the category–word pairings. (B) N400 
cluster in the memory test of the long-nap group, indicating the presence of more-developed lexical-semantic memory.
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to the duration of sleep stage 2 and to locally increased 
sleep spindle activity (not depicted here). Subsequent to 
the massed presentation of several labelled category ex-

emplars, it was found that sleep enabled 6- to 8-month-
olds to generalise across individual exemplars and to cre-
ate a long-term memory representation.

Sleep-dependent memory formation in infants: New episodic memories 
are protected from generalised semantic memories
 Friedrich, M. 1,  2,  Mölle, M. 3,   Friederici, A. D. 2, &  Born, J. 4
1 Department of Psychology, Humboldt University Berlin, Germany
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
4 Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tübingen, Germany

Any experienced event may be encoded and retained in 
detail as part of our episodic memory and may contrib-
ute to generalised knowledge stored in semantic memo-
ry. The beginnings of this declarative memory formation 
are poorly understood, and even less is known about the 
interrelation between episodic and semantic memories 

during their early stages. Here, we show that the forma-
tion of episodic memories in 14- to 17-month-olds de-
pends on timely sleep after an infant’s waking exposure 
to novel events. Our data reveal that semantic processing 
is suppressed for the newly stored detailed events, even 
though lexical-semantic memories are available for simi-

1.2.6

Figure 1.2.6  The N400 semantic memory effect and the FTMR episodic memory effect. ERP responses to correct (black lines) and incorrect 
(grey lines) object–word pairs in the whole trial interval, time-locked to word onset. Negativity is plotted upward. The parieto-occipital (PO) re-
gion includes mid-parieto-occipital, left parietal, and right parietal ROIs and  was calculated as the mean of the ERP amplitudes at the electrode 
sites P3, PZ, P4, CP5, CP6, P7, P8, O1, and O2. The left fronto-temporal ROI (LFT) involves F7 and T7. Voltage maps represent the spatial distri-
butions of the ERP differences between incorrectly paired and correctly paired words in the temporal range between 400 and 800 ms post word 
onset. (A) N400 semantic context effect to pairings with old objects in the wake group (t29 = –3.632, P = .001, d = –.663) and missing episodic 
context effect (t29 = –.863, P = .395). (B) Episodic context effect over the left fronto-temporal region (FTMR) to pairings with old objects in the 
nap group (t29 = 3.526, P = .001, d = .644) indicating episodic memory, and missing N400 semantic context effect (t29 = .238, P = .814). Source 
data	are	provided	as	a	Source	Data	fi	le.
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lar events that were not experienced before the nap. This 
selective inhibition of semantic processing may protect 
precise episodic memories from interference with gener-
alised semantic memories. It enables infants to tempo-
rarily overcome strong attractors in semantic memory, 

thereby	allowing	 the	creation	of	more	specifi	c	semantic	
knowledge.

Evolution and development of language-related pathways in great apes
 Eichner, C. 1,  Paquette, M. 1,  Gallardo, G. 1,  Crockford, C. 2,  Wittig, R. 2,   Friederici, A. D. 1, &   Anwander, A. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

The ability to generate language by using words and syn-
tactic rules is a uniquely human trait. Today we know that 
the human language ability is built on a network of dorsal 
and	ventral	fi	bre	pathways	connecting	the	language-spe-
cifi	c	brain	areas	in	the	inferior	frontal	and	temporal	lobe.	
The ontogenetic change of this language network through 
human development has been characterised by essential 
features such as maturation and lengthening of the dor-
sal path (Perani et al. 2011, PNAS, 108, 16056–16061). 
However, the phylogenetic emergence of this unique lan-
guage network remains unresolved. This is partially due 
to the unavailability of brain data from close evolutionary 
relatives as well as the lack of behavioural and structural 
data from wild apes. 
In a collaborative project with the Max Planck Institute 
for Evolutionary Anthropology, Leipzig, we are closing 
this gap by extending our research on the development 
of the human language network to the phylogenetic di-
mension. To understand the evolution of the language 
network, we investigate the connectivity of homologous 
brain areas of our closest evolutionary relative, the chim-
panzee. We scan the brains of wild and habituated chim-
panzees that died at different ages from a natural death 
in African national parks, sanctuaries, or European zoos. 
We use diffusion-weighted MRI (dMRI) to investigate the 
structural connectivity of the brain’s white matter, employ-
ing highly specialised MRI technology to obtain ultra-high-
resolution	dMRI	data	of	the	fi	xated	post	mortem	brains.	
The dorsal and ventral pathways are reconstructed using 
whole-brain	diffusion	fi	bre	tractography.	
Our	 fi	rst	 data,	 from	 a	 newborn	 and	 an	 adult	 chimpan-
zee, show the developmental status of the homologous 
language network in the chimpanzees compared to av-
eraged data in humans (see Figure 1.2.7). We were able 
to construct both the dorsal and the ventral pathways 
from our high quality dMRI data. This clearly showed a 
strengthening of the dorsal pathway during development 
in the chimpanzee, which is comparable to the human 

ontogeny (Perani et al. 2011, PNAS, 108, 16056–16061). 
However, the dorsal connection, which is crucial for hu-
man development of syntactic abilities, does not show 
the same shape and endpoints in the adult chimpanzee 
as in the human brain. Our data allow the reconstruction 

of the development of the precursors of the language net-
work at an unprecedented level of detail, thereby contrib-
uting to our understanding of the evolution of the unique 
human ability to process language.

1.2.7

Figure 1.2.7  The two dimensions of language network development 
(only	left	hemisphere	displayed).	The	fi	gure	shows	the	reconstruction	
of	language-related	dorsal	fi	bre	tracts	targeting	BA	6	(yellow)	and	tar-
geting	BA	44	(blue)	and	ventral	fi	bre	tract	(green)	in	humans	across	
development and the homologue of newborn and adult chimpanzees 
(top row, adapted from Perani et al. 2011, PNAS, 108, 16056–16061).
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Congresses, Workshops, and Symposia
2017

 � Friederici, A. D. (May). The Neural Oscillations in Speech and 
Language Processing. International Symposium, Harnack-
Haus of the Max Planck Society, Berlin, Germany. (Organizer 
together with Lars Meyer, Alessandro Tavano, & David 
Poeppel)

2018
 � Friederici, A. D. (November). Mental Structures and 

Sequences: Evolutionary solutions from birds to pri-
mates. Symposium. 48th Annual Meeting of the Society for 
Neuroscience. San Diego, CA, USA. (Chair together with 
Christopher I. Petkov) 

 � Paul, M. (September) Crossing The Borders Conference: 
Development of language, cognition, and the brain. 
Conference. University of Potsdam, Germany. (Organizer 
together with Annika Unger, Antonia Götz, Anne van der Kant, 
Sarah Eiteljörge, Barbara Höhle)

2019
 � Paul, M. (May) CBS Open Science Day. Workshop. Max 

Planck Institute for Human Cognitive and Brain Sciences, 
Leipzig, Germany.

 � Skeide, M. A. (August) Symposium: Neurocognitive origins 
of learning disorders, EARLI 2019 conference, Aachen, 
Germany.

 � Skeide, M. A. (September) Symposium: Developmental learn-
ing	disorders	–	from	genes	and	brains	to	cognitive	profiles,	
Biannual meeting of the Developmental and Educational 
Psychology Section of the German Psychological Society, 
Leipzig, Germany.

Degrees
Habilitation Theses
2018

 � Hartwigsen, G. Parieto–frontal contributions to language: 
Insights from transcranial magnetic stimulation. University of 
Potsdam, Germany.

 � Sammler, D. The Melodic Mind: Neural bases of intonation in 
speech and music. Leipzig University, Germany. 

 � Skeide, M. A. The brain basis of developmental dyslexia. 
Humboldt University Berlin, Germany.

PhD Theses
2017

 � Goucha, T. Conciliating language differences with univer-
sal competence in brain structure and function. Humboldt 
University Berlin, Germany.

 � Grosse Wiesmann, C. The emergence of theory of mind: 
Cognitive and neural basis of false belief understanding in 
preschool age. Leipzig University, Germany.

 � Xiao, Y. Resting-state functional connectivity in the brain and 
its relation to language development in preschool children. 
Leipzig University, Germany.

2018
 � Vavatzanidis, N. From syllables to words: Language percep-

tion and language acquisition of young children with cochlear 
implants. Leipzig University, Germany.

 � Vissiennon, K. The functional organization of syntactic pro-
cessing in three- and six-year-old children. Leipzig University, 
Germany.

2019
 � Beese, C. The effects of neurocognitive aging on sentence 

processing. Leipzig University, Germany.
 � Kuhl, U. The brain basis of emerging literacy and numeracy 

skills. Longitudinal neuroimaging evidence from kindergarten 
to primary school. Leipzig University, Germany.

 � Kroczek, L. The impact of speaker information on language 
processing. Leipzig University, Germany.
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Appointments
2018
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The overarching mission of our department is to prevent and treat stroke. To 
this end, we investigate neural mechanisms underlying: 

(i) the development of vascular risk factors (obesity, hypertension) and their 
neural impact, closely connected and overlapping with the second topic 

(ii) neurobehaviour and neurocognition of stroke and dementia (brain lesion) 

(iii) behavioural and cognitive recovery from stroke (rehabilitation). 

Paralleling these research areas, our translational goals are the development 
of interventional strategies to prevent the development of risk factors, to stop 
risk factor-dependent processes leading to stroke and dementia, and to im-
prove recovery from stroke. This can be conceived as a cycle in which each 
research theme closely hinges on the other themes.

Research Approach

We perform our studies exclusively with human subjects, either in large popu-
lation-based cohorts of thousands, in smaller groups of healthy young and old 
subjects (e.g., for studies on heart-brain interaction), in highly selected sub-
jects (e.g., with obesity or at risk for hypertension), and in very well charac-
terised cohorts of patients with stroke or dementia. Studies take place in the 
“lab”, but also – increasingly – in more naturalistic settings to improve eco-
logical	validity.	The	selection	and	characterisation	of	specifi	c	patient	cohorts	is	
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constitutively aided by the Clinic for Cognitive Neurology 
and a tight co-operation with ‘external’ clinical institutions 
(University Hospital Leipzig, Charité Hospital Berlin).

A central theme across all our research areas are brain-
body interactions. These are crucial to understand the 
vicious cycles in the generation of risk factors (e.g., the 
relationship between cardiac output, blood pressure, and 
neural activity), and the pathogenesis of brain damage 
(e.g., the relationship between visceral fat, chronic inflam-
mation, and white matter lesions in the brain). Brain-body 
interactions are also central to understanding and sup-
porting recovery after brain lesions (e.g., when using a 
brain-computer interface coupled with peripheral stimula-
tion for motor recovery).

Our research methodology involves behavioural and cog-
nitive assessments and non-invasive methods to assess 
neural structures and function (magnetic resonance im-
aging (MRI), magneto-encephalography (MEG), electroen-
cephalography (EEG), near-infrared spectroscopy (NIRS)). 
Given our focus on brain-body interactions, techniques 
to assess bodily function are used such as metabolic 
parameters in blood and saliva, MRI of visceral fat, ECG, 
blood pressure, and a robotic exoskeleton device to moni-
tor body movements. In addition to these “diagnostic” ap-
proaches, for interventional studies, we use devices to 
induce neuromodulation including transcranial magnetic 
stimulation (TMS), transcranial direct current stimulation 
(TDCS), transcranial alternate current stimulation (TACS), 
transcranial focused ultrasound stimulation (tFUS), and 
Brain Computer Interfaces (BCI).

Research Quality, Open Science

The department actively addresses issues which are 
known to impair research quality. The symposium Mind 
the Brain organised by members of our department 
(Isabelle Bareither, Felix Hasler, Daniel Margulies, Arno 
Villringer) in 2014 served as a wake-up call for activities in 
the department. Soon thereafter, in 2015, a research qual-
ity group was established in our department. This group 
has stimulated and pushed forward many useful develop-
ments for the department. Standard operating procedures 
(SOP) were established for most of the equipment used in 
the department. Statistical education of junior (and sen-
ior) scientists was improved by additional courses and 
training. The department was pushed towards an open 
science approach, for example by making databases pub-
licly available (Babayan et al. Sci Data 2019, Mendes et 
al. Sci Data 2019). Quality and reproducibility of studies 

will be further supported by pre-registrations on internet-
based sites (all studies have already been pre-registered 
locally for many years). Finally, the group has produced a 
handbook for the department, which is particularly helpful 
for newcomers. 

An Institute-wide open science initiative (CBS-Open 
Science) has been founded with a kick-off meeting in 
May 2019 co-organised by several members of the de-
partment (Blazej Baczkowski, Lieneke Janssen, Maria 
Paerisch, Lina Schaare, Cornelia van Scherpenberg). A 
two-day symposium on research quality in November 
2019, Doing Good – Scientific Practice under Review, 
has also been co-organised by a department member 
(Cornelia van Scherpenberg). 

Local Research Setting

The major part of our research takes place at the Max 
Planck Institute. However, our research approach involv-
ing – among others – large human cohorts and patients 
requires close collaboration with other groups and de-
partments within the Institute (neuroimaging, behavioural 
tasks, and paradigms) and groups at local universities, 
particularly Leipzig University, but also universities in 
Berlin, Halle, and Potsdam. 

Most importantly, we interact closely with our partner-
institution, the (Day-) Clinic for Cognitive Neurology at 
the University Hospital Leipzig (about 100m walking 
distance from the Max Planck Institute) where patients 
with brain lesions are diagnosed and treated. The Clinic 
for Cognitive Neurology offers an interface open to all re-
searchers at the Max Planck Institute. Clinical care and 
therapy for patients with acquired brain lesions is warrant-
ed by a highly interdisciplinary team, covering all aspects 

of neurologic, neuropsychological, and neuropsychiatric 
deficit	 expertise,	 neuropsychology	 plus	 the	 therapeutic	
fields	of	speech	and	 language	therapy,	orthoptics,	phys-
io-, ergo-  and social therapy, as well as counselling. This 
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offers a unique platform to perform research on the un-
derpinnings of cognitive impairment, forming the basis 
for the development of novel interventions and a highly 
interdisciplinary therapeutic range focusing on all relevant 
neuropsychological domains. 

Beyond the established therapy schemes the clinic ex-
plores and develops novel strategies to help patients 
minimise	their	deficits	and	the	burden	of	stroke	and	other	
diseases leading to the acquired brain lesion. A project 
on virtual reality, a study using tDCS as a support for an 
intensified	naming	training,	robots,	and	participation	in	a	
nation-wide speech and language therapy (SLT)-study are 
a few examples of the clinic’s engagement. 

In the past three years, a total of 19 studies in a total of 
270 patients have been performed with (former) patients 
of the Clinic by researchers (of all departments) at the 
MPI. 

Clinicians at the Day Clinic 
hold leading roles in German 
clinical neuroscience net-
works: Hellmuth Obrig is the 
head of the German Aphasia 
Society, Matthias Schroeter 
is the neuroimaging expert 
in the frontotemporal de-
mentia network in Germany 
and Europe, Angelika Thöne-
Otto is in the steering com-
mittee of the German Neuro-
psy cho logical Society, Arno 
Villringer is the coordinator 
of the German competence 
network Stroke and was co-
chair of this year’s meeting 
of the German Society for 
Neuro re habi litation. 

Hellmuth Obrig, Head of 
Day Clinic for Cognitive 
Neurology

Some relevant infrastructural developments 2017–2019

Grants: During the last three years, the department 
and its members have been part of several large pro-
ject grants such as the Collaborative Research Center 
“Obesity mechanisms”, the Leipzig Research Centre for 
Civilization Diseases (LIFE), and the Integrated Research 
and Treatment Center (IFB) AdiposityDiseases, together 
with Leipzig University. The NeuroCure Cluster and the 
Berlin School of Mind and Brain are both large-scale pro-
jects within the German Excellence Initiative (together 
with Humboldt University and Charité University Medicine  
Berlin). Furthermore, in a project grant together with the 
Charité, the Heinrich Hertz Institute of the Fraunhofer 
Society, the Clinic for Cognitive Neurology at Leipzig 
University, and our Department at the MPI, we have been 
developing virtual reality methods for clinical diagnostics 
and rehabilitation (VReha) funded by the German Ministry 
of Research. The department is also involved in the Max 
Planck UCL Centre for Computational Psychiatry and 
Ageing Research, of which Arno Villringer is member of 
the Coordination Committee. 

Cooperations: There is a plentitude of national and inter-
national co-operations; an overview is given in the Status 
Report of our Institute. Long-term co-operations exist with 
researchers in Montreal (Chris Steele, Claudine Gauthier, 
Christine Tardif), Harvard Medical School (Bruce Rosen), 
University of Haifa (Hadas Okon-Singer, Smadar Ovadia-
Caro), Institut du Cerveau et de la Moelle épinière, Paris 
(Daniel Margulies), and Stanford University (Audrey Fan). 

In the past year, we have started new co-operations in 
the area of obesity and diabetes with a research group at 
the National Autonomous University of Mexico (UNAM) 
in Mexico City (Carlos A. Aguilar-Salinas, focusing on 

a genetic disposition for diabetes type 2, which is high-
ly prevalent in Mexico), and the Institute for Cognitive 
Neuroscience, National Research University Higher 
School of Economics, Moscow, Russia (Maria Nazarova, 
Vadim Nikulin) focusing on transcranial stimulation to im-
prove rehabilitation in patients after stroke, and a group at 
Hebrew University, Jerusalem (Mona Soreq) working on 
epigenetics of hypertension and obesity.

Graduate Schools: We are part of several graduate 
school programmes in Berlin and Leipzig, such as the 
International Max Planck Research School NeuroCom at 
our Institute, the DFG-funded Berlin School of Mind and 
Brain at Humboldt University Berlin, the International Max 
Planck Research School on the Life Course at the MPI for 
Human Development, Berlin, the new International Max 
Planck Research School on Computational Methods in 
Psychiatry and Ageing Research (Comp2Psych), and the 
newly founded (DFG-funded) Research Training Group 
on Extrospection: External Access to Higher Cognitive 
Processes at Humboldt University Berlin. Arno Villringer 
is the lead PI – and now spokesperson – of a major new 
Germany-wide initiative for graduate education: the  Max 
Planck School of Cognition (MPS Cog). In a highly com-
petitive process, MPS Cog was selected as one of three 
national Max Planck Schools funded by the German 
Ministry of Education and Research and the Max Planck 
Society. MPS Cog combines 11 Max Planck Institutes, 14 
German universities, University College London, Institutes 
of the Helmholtz Association, and a Fraunhofer Institute 
(see separate report below in this report).

Scientific conferences are important means of science 
communication. Besides participation at major conferenc-
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es, e.g., OHBM (Organization for Human Brain Mapping) 
and SFN (Society for Neuroscience), the department 
regularly organises several symposia and conferences. 
There are two conference series organised every year by 
us: the MindBrainBody Symposium (between 2017 and 
2019 the 5th, 6th, and 7th instalments took place), and 
the Stroke Prevention Symposium (8th, 9th, and 10th). 

Furthermore, in 2019, the yearly meeting of the German 
Aphasia Society (GAB) took place in Leipzig (organised by 
Hellmuth Obrig). In December 2019, the annual meeting 
of the German Society for Neurorehabilitation with more 
than 900 participants took place in Leipzig (Conference 
Chairs: Caroline Renner, Arno Villringer). 

Careers

A central mission of our department concerns the pro-
motion of personal development and professional ca-
reers of all department members. Between 2017 and 
2019, 12 former department members and former doc-
toral students and postdocs of Arno Villringer’s group 
advanced to faculty positions and professorships: 
Annette Horstmann (Helsinki University, Finland), Chris 
Steele (Concordia University, Montreal, Canada), Smadar 
Ovadia-Caro (University of Haifa, Israel), Claudia Männel 
(Charité University Medicine Berlin, Germany), Daniel 
Margulies (Institut du Cerveau et de la Moelle épinière, 
Paris, France), Isabel Garcia-Garcia (Barcelona, Spain), 

Yating Lv (Hangzhou Normal University, China), Lorenz 
Deserno (University of Würzburg, Germany), Petra Ritter 
and Christian Nolte (Charité University Medicine Berlin, 
Germany), Georg Häusler (University of Würzburg, 
Germany), and Susanne Wegener (University of Zürich, 
Switzerland). The department has further developed ca-
reer trajectories to promote outstanding female scien-
tists, such as Julia Sacher, leader of the Minerva Research 
Group “Emotion Neuroimaging Lab”, and Veronica Witte, 
leader of the Department Group “Aging & Obesity”, in a 
tenure-track process with Leipzig University.

Publications

It is probably fair to say that our department has some rel-
evant impact on the brain imaging and neurovascular lit-
erature given that – in the last three years – we published 
a	 total	 of	 59	papers	 in	 the	field	of	 brain	 imaging,	 blood	
flow and metabolism in leading journals: i.e., NeuroImage 
(33), NeuroImage Clinical (9), Human Brain Mapping (9), 
Journal of Cerebral Blood Flow and Metabolism (7), and 
Stroke (1). Further studies appeared in leading journals 
such as Lancet, eLife, Brain (2), Annals of Neurology (2), 
JAMA Network Open, Neurology (4), Nature Neuroscience, 

Nature Communications (2), Journal of Neuroscience (3), 
Trends in Cognitive Sciences, Cerebral Cortex (3), EMBO 
Molecular Medicine, Nat Rev Neurosci, PLOS Comput 
Biol (2), and Nat Hum Behaviour. As part of large consor-
tia, there are further publications in Nature Genetics and 
Nature Communications. Highlighting these publications 
does in no way imply that we are not fully convinced of the 
scientific	value	of	all	the	other	papers;	the	entire	publica-
tion record of the last three years is given at the end of this 
department’s report.

On the following pages – structured along the three major research areas Risk Factors, Brain Lesions, and 
Rehabilitation – some research results obtained in the last three years by members of our department are described.
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A central hypothesis of our work is that an imbalance of mind-body interac-
tion underlies the development of obesity and hypertension. Psychological/
cognitive factors continuously interact with metabolic and vascular factors 
and – in vicious cycles – they mutually adjust. With time (years, decades), 
early functional and reversible alterations progress towards – often irre-
versible – structural damage both in the nervous system (e.g., white matter 
lesions, brain atrophy, small strokes) and in the body (e.g., arteriosclerosis, 
diabetes, kidney damage). Stroke and dementia are endpoints (among oth-
ers such as myocardial infarction) of these long-term developments.

Together with researchers at Leipzig University, we have established a 
strong research focus on brain-body interactions, especially regarding 
obesity (integrated research center obesity, collaborative project grant on 
“obesity mechanisms” and a recently founded Helmholtz institute). A large 
cohort of subjects (the LIFE study, n=10000) has been investigated thor-
oughly. As will be outlined subsequently, we study brain-body interactions 
underlying obesity, i.e., the relationship between metabolic factors, BMI, 
visceral fat, etc. and cognitive/emotional/neural factors and the progres-
sion towards brain damage. Regarding hypertension, we study the mutual 
interaction between brain/behaviour and the cardiovascular system, par-
ticularly the heart, as well as the progression towards brain damage.
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Neurocognition of obesity development
Horstmann,	A. 1, 2, 3
1 O’BRAIN Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 
2 Integrated Research and Treatment Center (IFB) AdiposityDiseases, Leipzig, Germany
3 Department of Psychology and Logopedics, Faculty of Medicine,  University of Helsinki, Finland

The O’BRAIN group has studied cognitive/behavioural 
alterations in relation to eating behaviour in lean, over-
weight,	 and	 obese	 subjects	 to	 identify	 potential	modifi-
able drivers of obesity development. We have shown 
that obese subjects fail to learn from negative prediction 
errors (Mathar et al., 2017a, Mathar et al., 2017b) as il-
lustrated	in	Figure	2.1.1.	We	also	identified	alterations	of	
psychological factors that may facilitate unhealthy eating 
behaviour such as impulsivity (Rosella et al., 2019), flex-
ibility (Meemken et al., 2018), incidental priming (Morys et 
al., 2018), reinforcement learning (Kube et al., 2018), and 
attention bias (Mehl et al., 2017) in adults and children 
with obesity. Several pilot studies have aimed at exploring 
the intervention potential of retraining automatic action 
tendencies	and	using	cognitive	bias	modification	(Mehl	et	

al., 2018, Mehl et al., 2019). General approach and avoid-
ance behaviour are related to hemispheric asymmetries 
as captured by resting state EEG and fMRI, but seem to 
be unrelated to eating behaviour or weight status (Morys 
et al., in press). Further, we showed that amygdala activity 
during food processing, as well as food liking, is modu-
lated by emotional context, independent of weight status 
(García-García et al., in press), and used fMRI neurofeed-
back to modulate amygdala activity (Hellrung et al., 2018). 
In sum, many of the behavioural aspects can be linked 
to alterations in dopamine, a neurotransmitter involved in 
motion, motivation, and reward. 
Obesity also has a strong societal / social component. We 
have therefore studied how bodily reactions (heart rate) 
and emotions during social interactions are influenced 

2.1.1
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by obesity (Schrimpf et al., 2017). We demonstrate that 
these factors are modulated by different societal influ-
ences when comparing societies allegedly having a more 

positive ‘image’ of obesity (Samoa) with a western soci-
ety in which obesity is often stigmatised (Schrimpf et al., 
2019).

Impact of obesity on brain and behaviour in a population-based cohort
Witte,	V. 1
1 OMEGA Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

To assess how overeating and obesity (and associated 
metabolic changes) affect brain structure and function, in 
cooperation with Leipzig University, we have been acquir-
ing and analysing data of the population-based LIFE-Adult 
study (n ~ 2600, aged 18-82 years), a uniquely rich dataset 
comprising genetic, metabolic, behavioural and advanced 
(neuro)imaging protocols. Applying multivariate statistics 
and replication in independent samples, we were able to 
provide evidence that a higher body mass index (BMI) is 
associated with reduced functional connectivity in the de-
fault	mode	network,	 a	finding	 that	may	 reflect	a	predis-
position to Alzheimer's Disease (AD) (Beyer et al., 2017). 
In addition, a higher BMI and higher waist-to-hip ratio 
were linked to grey and white matter structural alterations 
across multiple brain regions, which correlated with sub-
tle differences in executive functions and memory perfor-
mance (Beyer et al., 2019a; 2019b, Kharabian et al., 2018; 
Zhang et al., 2018). Using a novel in-house-developed seg-
mentation technique on high-resolution fluid attenuated 
inversion recovery (FLAIR) images of 1280 participants, 
whole-brain	analyses	provided	the	first	evidence	that	vis-
ceral fat accumulation uniquely predicts lesion load in the 
deep white matter (Lampe et al., 2019). Moreover, struc-
tural equation modeling suggested that visceral obesity 
contributes to deep white matter hyperintensities (WMH) 

through elevated pro-inflammatory cytokines, i.e. interleu-
kin-6, measured in blood (Figure 2.1.2). This hints toward 
a pathomechanistic link between obesity, inflammation, 
and deep WMH. 

Future longitudinal studies, including the ongoing six-
year-follow up assessment of the LIFE-Adult study (cur-
rently	at	n	~	600),	 are	needed	 to	confirm	 these	hypoth-
eses. While the spatial distribution of white matter lesions 
is	 indicative	of	specific	 impairments	 in	certain	cognitive	
domains (Lampe et al., 2018), potential genetic under-
pinnings of this regional inhomogeneity remain unclear. 
We therefore joined the NeuroCHARGE consortium in a 
meta-genome wide association study (GWAS) on periven-
tricular vs. deep white matter lesions (n = 26,654; Nyquist 
et	al.,	Stroke,	in	revision).	We	identified	genetic	loci	previ-
ously implicated in vascular as well as astrocytic and neu-
ronal function, particularly for deep WMH. Upcoming RNA 
sequencing in the LIFE-cohort, which we pursue in coop-
eration with the Soreq-lab (Hebrew University, Jerusalem) 
will now offer the opportunity to disentangle the (epi)ge-
netic mechanisms of obesity.

2.1.2

Figure 2.1.2  Visceral obesity, measured using 
waist-to-hip ratio (WHR), is related to deep white 
matter hyperintensities (WMH, red brain colour) 
via systemic low-grade inflammation (interleu-
kin-6 (IL-6), measured in blood).  Blue brain col-
our indicates regional associations of WMH with 
higher	 systolic	 blood	 pressure.	 Figure	modified	
from Lampe et al., 2019.

WHR WMH

IL-6 indirect effect, a*b: ß=0.07
[0.004, 0.14] 99% Cl



57

Risk Factors

Neurocognition of hypertension and heart-brain interactions
Gaebler,	M. 1
1 MindBodyEmotion Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

We have previously shown how blood pressure regulation 
is influenced by emotion-related brain areas (Okon-Singer 
et al., 2014, J Neurosci, 34(12), 4251–9). A key control ele-
ment of cardiovascular function is the heartbeat and thus, 
in a series of studies, the MindBodyEmotion group has 
investigated the bidirectional information flow between 
the brain and the heart and its links to emotions, stress, 
but also perception and action. During each cardiac cy-
cle, when the ventricles contract and eject blood into the 
arteries (i.e., systole), stretch-sensitive baroreceptors sig-
nal blood pressure changes to the lower brainstem and 
further to subcortical (e.g., amygdala and thalamus) and 
cortical regions (e.g., anterior cingulate cortex and insu-
la). These higher-level brain structures, in turn, adapt au-
tonomic (i.e., sympathetic and parasympathetic) activity 
to situational demands via efferences to brainstem nu-
clei, adrenal glands, and the heart (Critchley and Harrison, 
2013, Neuron, 77(4), 624–38). While heart-brain interac-
tion is – obviously – bidirectional, our studies can be dis-
cussed along the main directions of the said interaction. 

Brain to heart: By analysing temporal variations in the 
interval between consecutive heartbeats, heart rate vari-
ability (HRV) can quantify parasympathetic cardioregu-
lation – during tasks and at rest. HRV during the socio-
emotional cyberball task was found to differ between lean 
and obese participants (Schrimpf et al., 2017). By repeat-
ing this “travelling” experiment in American Samoa, where 
body weight is less stigmatised than in Germany, we 
found that HRV was modulated by culture (Schrimpf et 
al., 2019). In a different study, HRV decreased after acute 
psychosocial stress (the Trier Social Stress Test), and this 

decrease was associated with stress-related changes in 
thalamic connectivity, as measured using resting state 
functional MRI (Reinelt et al., 2019). Focussing on brain-
heart interactions over the lifespan, we found age-de-
pendent associations between resting HRV and (1) rest-
ing-state functional connectivity along the cortical midline 
(Kumral et al., 2019) as well as (2) orbitofrontal cortical 
thickness (Koenig et al., submitted), which may contrib-
ute/link to age-associated decreases in HRV function.

Heart to brain: Not only do mental and situational (e.g., 
socio-emotional) processes influence the heart rate and 
its variability, but spontaneous activity in the heart also 
influences the processing of signals in the environment. 
We found two heartbeat-related effects on perception. 
The	first	 is	 linked	 to	 the	 timing	of	a	stimulus	within	 the	
heartbeat cycle: near-threshold somatosensory stimuli 
at	 the	 index	finger	are	more	 likely	 to	be	perceived	when	
they are presented during later (i.e., diastole) compared 
to earlier phases (i.e., systole) of the cardiac cycle (Al et 
al., submitted; Motyka et al., 2019). The second is linked 
to the amplitude of the so called “heartbeat-evoked poten-
tial” (HEP), which is assumed to be the central representa-
tion of the heartbeat. Higher HEP amplitudes were asso-
ciated with lower detection rates and lower amplitudes in 
the somatosensory-evoked potential (Figure 2.1.3 and Al 
et al., submitted). Interestingly, the cardiac phase not only 
modulates perception but also action. In Kunzendorf et 
al., 2019, we found that participants preferentially pressed 
a button, which prompted briefly presented pictures they 
had to memorise, during cardiac systole. 

2.1.3

Figure	2.1.3		Left	and	Middle:	Near-threshold	somatosensory	stimuli	at	the	finger	are	more	likely	to	be	detected	during	diastole	(blue)	than	dur-
ing systole (red), and they increase later components (i.e., P300) of the somatosensory evoked potential (SEP) over somatosensory electrodes 
(C4). Right: Higher heartbeat-evoked potential (HEP) amplitudes over somatosensory electrodes were associated with lower detection rates. 
Modified	from	Al	et	al.	(Al	et	al.,	submitted).
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Thus, the coupling between activity in the heart and the 
brain goes along with emotions and stress as well as 
with perception and action. Currently, we are studying al-
terations of these interactions in subjects with different 
stages of hypertension and heart disease. It has already 
been suggested that the modulation of HEP amplitude 
during interoceptive tasks differs between normotensive 
subjects and those with early stage hypertensive disease 
(Yoris et al., 2018, Hum Brain Mapp, 39(4), 1563–81). We 
have recently pre-processed EEG with ECGs in more than 
3000 subjects of the LIFE study. Based on these subjects, 
we will assess how the HEP amplitude is associated with 
blood	pressure	levels	and	specifically	stages	of	hyperten-
sion, anti-hypertensive medication, HRV, as well as altera-
tions of brain morphology and functional connectivity. 
Potential drivers of a vicious neuro-behavioural-blood 
pressure	cycle	in	hypertension	are	assumed	beneficial	ef-
fects of elevated blood pressure. For example, it has been 
reported that higher blood pressure is associated with ele-
vated pain threshold and emotional dampening (especial-
ly for negative emotions). A large survey of German teen-
agers (n=7688) has reported better well-being and lower 
distress in those with elevated blood pressure (Berendes 
et al. Psychosom Med 2013 75:422-8). Another study in 
adults has suggested that high blood pressure is associ-

ated with lower rates of depression and better well-being 
(Herrmann-Lingen et al. Psychosom Med. 2018 80:468-
74). Since the latter study was on a clinical sample, it may 
not be representative for the general population. We are 
currently addressing these relationships in data of the UK 
Biobank	 (n	 >	 500,000).	Our	 results	 confirm	 the	 reduced	
prevalence of depressive symptoms and higher levels of 
well-being with increasing blood pressure (Schaare et al., 
in preparation). The diagnosis of hypertension itself, how-
ever, is negatively associated with well-being. In another 
study, we are testing (and our preliminary results seem 
to	confirm)	 the	emotional	dampening	hypothesis	by	ex-
posing subjects to pictures of different emotional valence 
(Erbey et al., in preparation).

Regarding the impact of blood pressure levels on brain 
structure, our study on 423 young subjects (19–40 years) 
has provided quite provocative results, i.e., by showing 
that in young subjects with elevated blood pressure (> 
120/80mmHg) but below the level of hypertension, reduc-
tions of brain volume are seen in comparison to subjects 
with lower blood pressure (Schaare et al., 2019). These 
findings	may	have	implications	for	the	definition	of	an	op-
timal blood pressure. 
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Next steps: Longitudinal and intervention studies
While many of our studies (regarding both risk factors) are 
cross-sectional and correlational, we are now entering the 
phase of longitudinal and interventional studies, based on 
which we are hoping for conclusions about prediction and 
causation. The large LIFE cohort study is now in the 7-year 
follow-up phase (by the time of this writing, we have a fol-
low-up in more than 600 subjects). 

Also, we have now been starting (or will in the near future) 
several intervention studies. We are investigating the im-
pact of high-sugar/high fat diets on the dopaminergic sys-
tem. We hypothesise that the impact on dopaminergic neu-
rotransmission will be similar to those observed in subjects 
with obesity and that this is mediated by chronic low-grade 
inflammation. In another study, we are assessing the im-
pact of prebiotics on food-related brain activity and behav-
iour which we hypothesise to be mediated by changes in 
the gut microbiome and subsequent pathways, such as 
short chain fatty acids metabolites. Complementing these 

“bottom-up” interventions, we will assess the effect of tran-
scranial direct current stimulation (tDCS) on eating behav-
iour, and blood pressure, and the effect of executive control 
training, which we have shown to improve emotion regu-
lation (Cohen et al., 2016, NeuroImage, 125, 1022–1031), 
on blood pressure regulation. Methodologically, the devel-
opment of non-invasive deep brain stimulation using low-
intensity ultrasound is promising as the basis for a next 
round of intervention studies targeting obesity and hyper-
tension.

Conceptually, the department collaborates with the 
Minerva Research Group "Emotion Neuroimaging Lab" to 
study (cross-sectionally and longitudinally) sex differences 
in	mind-body	interactions	and	to	develop	sex-specific	strat-
egies to improve prevention and treatment of obesity and 
hypertension.



Neurocognition of 
Acute and Chronic 

Brain Lesions 
(Stroke, Dementia)

2.2Neurocognition of 2.2Neurocognition of 

We attempt to understand the underlying pathophysiology of different 
forms of brain damage, and its impact on brain organisation, cognition, 
and behaviour. This research can be grouped into three closely interacting 
research lines focusing on (i) local and distant effects of acute ischemic 
lesions (in cooperation with the Center for Stroke Research Berlin (CSB), 
on (ii) neuroimaging biomarkers of (impaired) cognitive function, and on 
(iii) neuroimaging and biochemical (CSF, serum) biomarkers of dementia 
& neurodegeneration.  
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Neuroimaging of acute and subacute ischemic brain damage 
Khalil,	A. 1, Ovadia-Caro,	S. 2, 3, Bayrak,	S. 2, Tanritanir,	A.	C. 1, Villringer,	V. 1, Fiebach,	J. 1, & Villringer,	A. 2
1 Neuroradiology at Center for Stroke Research, Charité University Medicine Berlin, Germany
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Department of Cognitive Sciences, University of Haifa, Israel

We validated the resting-state based perfusion assess-
ment method (Khalil et al., 2017, Ni et al., 2017), which we 
inaugurated (Lv et al., 2013, Ann Neurol, 73(1), 136–40), 
by comparing it to established dynamic susceptibility-
based perfusion measurements. We furthermore dem-
onstrated	how	 it	 allows	 the	 identification	of	 reperfusion	
online (Khalil et al., 2018). In order to reduce imaging time 
as	 much	 as	 possible,	 we	 tried	 to	 find	 the	 optimal	 bal-
ance between image-quality and SNR versus scan length 
(Tanritanir et al., submitted). We show that adequate SNR 
for lesion detection can be achieved at a measurement 
time of only 2 min (Tanritanir et al., submitted). We have 
also further validated the MR-based assessment of oxy-
gen extraction fraction based on quantitative susceptibil-
ity mapping (QSM) in patients with acute stroke (Fan et 
al., 2019). 
We know that the impact of an acute lesion goes beyond 
the focal damage, and we have previously shown that are-

as connected to the site of a lesion are more affected than 
other areas (Ovadia-Caro et al., 2013, J Cereb Blood Flow 
Metab, 33(8), 1279–85; Ovadia-Caro et al., 2014, Stroke, 
45(9), 2818–24). Clearly, this is not a yes/no distinction, 
but rather more/less. Recent functional connectivity stud-
ies have now overcome the subdivision of the brain into 
separated	 networks,	 but	 rather	 define	 gradients	 of	 con-
nectivity as a new metric to map the brain (Margulies 
et al., 2016, PNAS, 113(44), 12574–9, Huntenburg et al., 
2018). We were now able to show that this view on brain 
architecture also provides a meaningful new framework 
to understand the local/distal consequences of focal le-
sions (Bayrak et al., 2019). 
We are currently trying to bridge the gap between acute 
lesion mapping and long-term functional outcome. In one 
study, we have prospectively recruited 120 patients with 
acute stroke affecting predominately the somatosensory 
system (no or little motor symptoms) and followed them 

2.2.1

Figure 2.2.1.1  Lesion location across patients shown in anatomical space as well as along connectivity gradients. (A) Anatomical lesion dis-
tribution in individual stroke patients (n=28) projected onto an MNI brain. Red-to-yellow colour bar indicates the probability of a voxel to be 
lesioned	across	patients.	(B)	Location	of	lesions	projected	onto	the	first	three	connectivity	gradients.	The	three	connectivity	gradients	repre-
sent a low-dimensional description of the whole-brain connectivity matrix obtained using healthy controls data (n=28). Corresponding spatial 
maps of each connectivity gradient are projected on a brain surface mesh near respective axes. Colours represent positive (red) and negative 
(dark blue) embedding values, in accordance with values along the axes. Along each gradient voxels that share similar connectivity patterns 
are situated close to one another and have similar embedding values. Grey scatter plots depict a two-dimensional connectivity space created 
as a combination of any two given gradients. Lesion location along each gradient is projected onto the two-dimensional space. Red-to-yellow 
colour bars indicate the probability of a voxel to be lesioned across patients, as an alternative approach to anatomical lesion mapping. Lesioned 
voxels are mostly clustered around the edges of the connectivity gradients such that they affect sensorimotor areas and areas associated with 
ventral and dorsal attention.
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up	for	one	year	(behaviourally,	MRI)	specifi	cally	regarding	
the development of chronic poststroke pain (CPSP). 20 
patients developed pain, and we are currently identifying 

predictive factors for pain development. We also contrib-
ute to a prospective study on “1000 stroke patients” at 
Charité Hospital, Berlin.

Neuroimaging determinants (biomarkers) of (impaired) cognitive function
 Nikulin,	V. 1, 2
1 Neural Interactions and Dynamics Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany
2 Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 

Moscow, Russia

We	 have	 identifi	ed	 and	 validated	 several	markers	 of	 in-
tact (or disturbed) cognitive function and (brain) health. 
Many	 of	 these	 biomarkers	 are	 based	 on	 MRI	 fi	ndings,	
which reflect neural activity and cognition only indirectly. 
Interestingly,	 in	recent	years,	signifi	cant	progress	 in	EEG	
data analysis has been achieved which allows similar 
questions to be addressed with electrophysiological sig-
nals that directly represent the underlying neural function 
(see below). 

BOLD variability, EEG variability, EEG alpha power, EEG 
long-range temporal correlations: A number of studies in 
recent years have proposed BOLD signal variability (both 
in task-based as well as resting-state fMRI) as a marker of 
overall brain health (Grady and Garrett, 2018, NeuroImage, 
169, 510–23). BOLD variability is known to decrease with 
age but also in mental disorders (Armbruster-Genc et al., 
2016, J Neurosci, 36(14), 3978–87; Garrett et al., 2013, 
Cereb Cortex, 23(3), 684–93). However, given the indirect 
relationship between BOLD and underlying neural activity, 
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Figure 2.2.1.2  Relationship between lesion location along connectivity gradients and the degree of changes in functional connectivity in non-
lesioned voxels over time. (A) Correlation values between distance-to-lesion and spatial concordance (y-axis) are shown for individual patients 
and the three connectivity gradients (x-axis). The spatial map of each connectivity gradient is shown below the respective location on the x-axis. 
Correlations	were	signifi	cantly	positive	for	Gradient	1	((P=0.0027,	W=71.0),	one-tailed	Wilcoxon	signed-rank	test)	and	Gradient	3	(P=0.0001,	
W=35.0), but not for Gradient 2 (P=0.76, W=189.0). The closer a voxel is to the lesioned site mapped on connectivity gradients 1 and 3, the more 
pronounced its functional connectivity changes over time. (B) Continuous connectivity gradients and corresponding seven canonical resting-
state networks (Yeo et al J Neurophysiol 2011; 106:1125-65.). Voxels are situated based on their embedding values along Gradient 1 (x-axis) 
and 3 (y-axis) and coloured according to their network assignment. Gradient 1 captures the dissociation between the default-mode network 
(DMN) and the sensorimotor networks on its two edges, while Gradient 3 captures the dissociation between dorsal attention/fronto-parietal 
networks and sensorimotor/DMN networks on its two edges. Lesion distributions along connectivity gradients are overlaid on the individual 
gradient axes. Lesions overlap most frequently with the lowest ends of Gradients 1 and 3. 
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which depends crucially on intact neurovascular coupling, 
it is not clear whether the relationship between BOLD vari-
ability and cognition is truly based on neural variability. 
The latter can be assessed with EEG. We therefore as-
sessed EEG variability across different age groups and 
compared it to BOLD variability acquired in the same sub-
jects. The interesting result was that both measures (EEG-
variability, BOLD variability at rest) were affected by age, 
but in this well-powered study of 189 subjects, there was 
almost	no	significant	correlation	between	the	 two	types	
of variability (Kumral et al., 2019a). In addition to EEG vari-
ability (i.e. the standard deviation of the signal over time), 
alpha power and long-range-temporal correlations (LRTC) 
are highly promising biomarkers. The presence of LRTC 
shows that there is a slowly decaying memory in the tem-
poral signatures of neuronal activity. Moreover, LRTC indi-
cate that neuronal networks operate at the critical state 
(a state describing a balance between excitation and in-
hibition), which is thought to be optimal for the function-
ing of the neuronal networks in the brain, where dynamic 
range, information capacity, and transmission are maxim-
ised (Shew and Plenz, Neuroscientist, 2013; 19: 88-100). 
We recently found differential relations between EEG al-
pha power and LRTC to the results of cognitive assess-
ment.	 In	brief,	our	findings	suggest	 that	alpha	power	at	
rest relates to tasks that employ sustained inhibitory con-

trol, while LRTC might reflect the capacity of neuronal net-
works to perform tasks that require phasic attention and 
quick adaptation to changing task demands (Mahjoory et 
al NeuroImage 2019; Figures 2.2.2.1 and 2.2.2.2). These 
findings	 are	 potentially	 of	 relevance	 for	 research	 in	 de-
mentia	 e.g.,	 they	might	 be	used	 for	 the	 identification	of	
people at risk for developing cognitive impairments.
White matter lesions (WML) are a well-known marker of 
progressive brain damage associated with risk factors, 
but	 their	 relationship	 to	specific	cognitive	 functions	has	
been	 difficult	 to	 establish.	 In	 several	 studies,	 we	 have	
established a relation between WML, their location, and 
specific	cognitive	domains	 (Kynast	 et	 al.	 J	Cereb	Blood	
Flow Metab 2018, Lampe et al. J Cereb Blood Flow Metab 
2019) and also their differential relationship to different 
risk	 factors,	 specifically	 BMI	 (Lampe	 et	 al.	 Ann	 Neurol	
2019). More generally, we have also shown that variations 
in fractional anisotropy (FA) of white matter – another po-
tential marker of damage – relates to cognition (Zhang et 
al. Neuroimage 2018).  
Changes in grey matter have mostly been analysed with 
voxel based morphometry or measurements of cortical 
thickness by us as well as other groups. Recently, we 
identified	grey matter structural brain networks that are af-
fected by vascular risk factors and aging and which un-
derlie variations in different cognitive domains. Most no-

Figure 2.2.2.1  Spearman	correlation	shows	a	significant	relationship	
between attention-span scores and resting-state power in alpha os-
cillations (8–12 Hz). (A) Sensor space results indicated that higher 
alpha power at rest was associated with increased attention-span 
(CVLT-II)	score.	Significant	correlations	at	p	<	0.05	are	marked	as	bold	
channels and are circled for p < 0.01. (B) Across subjects scatter plot 
of the relationship between the power and the task score is shown 
for	 the	electrode	Fz.	 (C)	Colour-coded	correlation-coefficient	values	
at source space are plotted on the cortical surface.

Figure 2.2.2.2  Spearman	correlation	shows	a	significant	relationship	
between working memory performance and LRTC in resting-state al-
pha oscillations (8–12 Hz). (A) Negative correlations in sensor space 
indicated that higher scaling exponents related to lower switch-cost 
score corresponding to more accurate and faster working memory 
performance.	Significant	correlations	at	p	<	0.05	are	marked	as	bold	
channels and are circled for p < 0.01. (B) Scatter plot across sub-
jects	of	the	most	significant	correlation	at	the	electrode	FC2,	v	indi-
cates	LRTC.	(C)	Colour-coded	correlation-coefficient	values	at	source	
space are plotted on the cortical surface.
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tably we reported that a network of multimodal regions 
that correlated with memory performance was affected 
by visceral fat (VAT) content (Kharabian-Masouleh et al. J 
Cereb Blood Flow Metab 2018). For this network we fur-
thermore showed – in cooperation with the EGG group of 
Julia Sacher – that estradiol concentration was associat-
ed with a reduction in the negative association of VAT with 
this network’s covariance in women (Zsido et al., 2019). 
While	 the	 above-mentioned	 findings	 are	 all	 based	 on	
hypothesis-driven studies, we also looked into machine-
learning based approaches. The brain age prediction that 
we established did not only correlate well with chronologi-
cal age, but – importantly – we found that deviations of 
the predicted age from the cognitive age captured cog-

nitive impairment (Liem et al., 2017, already cited more 
than 100 times). In the next step, in cooperation with the 
Machine Learning group at TU-Berlin and the Fraunhofer 
Institute (Hofmann et al., in preparation), we are using 
semi-automated Spectral Relevance Analysis (Lapuschkin 
et al., 2019, Nat Comm, 10(1), 1096) to characterise the 
behaviour of nonlinear learning machines in order to iden-
tify – without a priori hypotheses – the imaging features 
on which these predictions are based on. 
Mechanisms of brain lesions and their impact on brain 
function and cognition/behaviour continues to be a major 
subject of our research. With several studies in the past 
three years, we have continued to study brain lesions from 
the acute to the chronic phase. 

Dementia (Phenotyping with imaging, serum, and CSF biomarkers)
Schroeter,	M. 1, 2
1 Clinic for Cognitive Neurology, University Hospital Leipzig, Germany
2 Cognitive Neuropsychiatry Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany

Neurodegenerative diseases are widespread and society 
is confronted with an increasing prevalence in the future. 
The most important challenges are early recognition and 
treatment. We have been developing statistical approach-
es to utilise biomarker information from multimodal im-
aging, serum, and cerebrospinal fluid to predict diagno-
sis,	differential	diagnosis,	and	treatment	efficacy	in	these	
diseases. Diseases cover a wide spectrum ranging from 
dementia syndromes such as Alzheimer’s disease, behav-
ioural variants & frontotemporal dementia, and language 
variants such as primary progressive aphasias to motor 
syndromes such as Parkinson’s disease and its atypical 
variants corticobasal syndrome and progressive supranu-
clear palsy. 
To address these challenges we start from “big data 
mining” approaches including meta-analyses and multi-
centric cohort data. Here, we have validated disease-
specificity	of	 imaging	criteria	by	conducting	quantitative	
and systematic anatomical likelihood estimate (ALE) and 

seed-based d mapping (SDM) meta-analyses. These me-
ta-analyses identify the neural correlates of the aforemen-
tioned neurodegenerative diseases and reveal disease-
specificity	 of	 the	 imaging	 criteria	 (Albrecht	 et	 al.,	 2017,	
Albrecht et al., 2019a, Albrecht et al., 2019b; Bisenius 
et al., 2016, Europ J Neurol, 23, 704–12; Schroeter et 
al., 2009, NeuroImage, 47, 1196–206; Schroeter et al., 
2014,  Cortex, 57, 22–37; Schroeter et al., 2015, J Neurol 
Neurosurg Psychiatry, 86, 700–1). In the next step, we 
have “personalised” these data by validating their speci-
ficity	for	single	patients	in	multi-centric	cohort	data.	Here,	
we showed that multimodal imaging approaches are reli-
able biomarkers to predict the diagnosis, differential diag-
nosis, and symptoms in individual patients with high ac-
curacy (Bisenius et al., 2017; Meyer et al., 2017; Mueller 
et al., 2017). Figure 2.2.3 illustrates that MRI combined 
with machine learning was able to predict corticobasal 
syndrome and a peculiar clinical syndrome, i.e. alien hand 
syndrome, where persons perceive their own hand / foot 
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as alien (Albrecht et al., 2019). In Parkinson’s disease, 
therapy	efficacy	of	 levodopa	can	be	predicted	based	on	
MRI (see again Figure 2.2.3; Ballarini et al., 2019), a deci-
sive step towards personalised therapy optimisation with 
biomarkers. Finally, we used molecular biomarker data 
from cerebrospinal fluid and serum, in particular neuro-

filaments,	to	predict	disease	course	and	imaging	chang-
es in these diseases (Lehmer et al., 2017; Steinacker et 
al., 2017; Steinacker et al., 2018). We focused on genetic 
disease cases such as c9orf27 mutation carriers (Diehl-
Schmidt et al., 2019).

Figure 2.2.3  (A) Regions predicting corticobasal syndrome (CBS) in comparison with healthy controls (HC) and CBS with alien limb syndrome 
(CBS-AL) in comparison with CBS without alien limb syndrome (CBS-0) in structural MRI. (B) Higher age and brain regions predict treatment 
response to levodopa in Parkinson’s with structural MRI in multivariate analysis. Univariate analysis also reveals atrophy in this brain region 
(overlap yellow). 
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Sensorimotor Function, 
Learning, and Plasticity: 

In Healthy Aging and 
Rehabilitation after Stroke

2.3Sensorimotor Function, 2.3Sensorimotor Function, 

This research line is motivated by the translational goal of improving re-
habilitation after focal lesions (stroke) but also counteracting functional 
decline in aging. There is a focus on the sensorimotor system.  We perform 
(i) basic studies on somatosensory processing, (ii) sensorimotor perfor-
mance and motor learning and their alteration during aging and after focal 
lesions, and we are (iii) developing and validating interventions to improve 
sensorimotor function.



67

Rehabilitation

Somatosensory processing (also general method development to 
understand cortical processing and excitability noninvasively)
Nikulin,	V. 1, 2, & Villringer,	A. 1, 3
1 Neural Interactions and Dynamics Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany
2 Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 

Moscow, Russia
3 MindBrainBody Institute at Berlin School of Mind and Brain, Humboldt University Berlin, Germany

A long-term research interest of our group has been the 
noninvasive mapping of somatosensory (and motor) func-
tion (since the work of Kurth et al., 1998, Neuroreport, 9(2), 
207–12). In collaboration with the Dept of Neurophysics 
and the University of Magdeburg, we were able to parcel-
late the homuncular organisation of the sensorimotor 
cortex (Area 3b and 4) based only on structural T1-maps 
(i.e. reflecting myelin concentration). This parcellation is 
possible	due	 to	 the	new	finding	 (for	humans)	 that	 there	
are myelin-based borders (septa) between major body 
parts (e.g., hand-face) (Kühn et al., 2017). In the same col-
laboration we furthermore showed that functional map-
ping	 of	 the	 cortical	 representation	 of	 individual	 fingers,	
in primary somatosensory cortex, can be achieved even 
without	 actually	 touching/stimulating	 the	 finger	 but	 by	
passively	observing	that	the	respective	finger	is	touched.	
In other words, we have provided evidence for "foreign 
source maps" in early sensory cortices in the healthy hu-
man brain (Kühn et al., 2018).  

Beyond the mapping of cortical representations, we are 
employing noninvasive neuroimaging approaches (EEG, 
fMRI, MEG) to understand cortical processing related to 
sensory input. A focus has been  on the functional sig-
nificance	 of	 background	 alpha	 rhythms.	Many	 research	
groups have investigated whether (mostly spontaneous) 
modulations of the background alpha are associated with 
alterations in perception and evoked activities. Regarding 
the perception of subsequent stimuli, we provided strong 
arguments for a causal role of background alpha by 
showing that transcranial alternating current stimulation 
(TACS) over the sensorimotor cortex not only modulated  
the alpha rhythm (Gundlach et al., 2017) and decreased 
selectively local BOLD activity (Gundlach et al, in revision), 
but also was associated with cyclic alterations of soma-
tosensory perception (Gundlach et al., 2016, Brain Stimul, 
9, 712–9). Results regarding the background alpha rhythm 
influence on evoked brain activity (evoked potentials) have 
been quite controversial. Some studies show effects of 
background alpha on early potentials, while others show 
effects on late evoked potentials (e.g., our own studies 
by Becker et al., 2008, Neuroimage, 39, 707–16; Becker 
et al., 2011, J Neurosci, 31, 11016–27). In a recent study 
(Iemi et al., 2019), we now show that this controversy can 
be resolved by considering the non-sinusoidal nature of 

the alpha rhythm which, does not integrate to zero over 
time, but rather is associated with a DC-like offset (base-
line-shift). In combination with the amplitude modulation 
of oscillations, this leads to the generation of evoked re-
sponses. The fundamental aspect of such a baseline-shift 
mechanism is due to its applicability to virtually all sen-
sory, motor, and cognitive tasks where there is a modu-
lation of neuronal oscillaitons. Our results (for the visual 
system) show that with higher alpha rhythm strength 
early EP-components are suppressed (via functional inhi-
bition) while later components (after 0.4s) were actually 
enhanced due to this novel baseline-shift mechanism. For 
the somatosensory system, we recently tested whether 
the alpha-related inhibitory effect on the earliest cortical 
SEP	component	(S20)	can	be	confirmed,	and	indeed	we	
were able to show this effect (Stephani et al, submitted). 
Here we provided a neurophysiological explanation for 
the paradoxical increase of evoked responses associated 
with the stronger inhibitory cortical state due to the pres-
ence of pronounced alpha oscillations. Moreover, in the 
same study we showed that trial-to-trial variability of N20, 
reflecting EPSPs, follows power-law temporal dynam-
ics. This in turn provides a parsimonious explanation for 
the	 functional	 benefits	 of	 neuronal	 variability	 in	 S1,	 due	
to the presence of critical dynamics (explained above in 
Abstract 2.2.2).

Given the influence of background alpha rhythms on 
cortical processing, we feel that it is quite exciting using 
subliminal stimulation. Alpha rhythms can actually be up- 
or down regulated depending on the pattern of stimula-
tion (single stimuli versus trains) (Forschack et al., 2017, 
Iliopoulus	et	al.,	submitted).	That	is,	we	have	identified	a	
way to manipulate cortical excitability completely nonin-
vasively. 

Currently, our work on cortical somatosensory processing 
is establishing an exciting link to our research on brain-
heart-interaction	 (see	first	paragraph).	 It	seems	that	 the	
somatosensory cortex plays a major role in this interac-
tion and is the site of the heartbeat evoked potential (Al 
et al., in revision).

2.3.1
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Motor performance and learning 
Ragert,	P. 1, 2, & Sehm,	B. 1, 3
1 Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany
2 Faculty of Sport Science, Leipzig University, Germany
3 Clinic of Neurology, University Hospital Halle, Germany

Predictors of sensorimotor learning: We continued to in-
vestigate factors that can predict interindividual differenc-
es in motor learning. We showed that grey matter volume 
in the right orbitrofrontal cortex was related to the sub-
jects'	initial	level	of	proficiency	and	their	ability	to	improve	
performance during practice of a complex motor task 
(Lehmann et al., 2019). In this study, baseline fractional 
anisotropy	(FA)	in	commissural	prefrontal	fibre	pathways	
also showed a strong trend to predict motor learning. 
Analogously,	we	showed	that	fibre	bundle	cross	section,	
a measure of structural connectivity between right lateral 
PFC and left striatum, predicted learning associated func-
tional connectivity changes in a complex whole-body se-
rial reaction time task (Mizuguchi et al., 2019). 

Motor coordination in aging and stroke patients: The use 
of a robotic device in an augmented-reality environment 
enables us to deploy ecologically valid tasks that repre-
sent important aspects of sensorimotor control including 
visually guided reaching, proprioception, and bilateral co-
ordination. By adopting a classical bimanual coordination 
task in the setting of a robotic device in an augmented-
reality environment we were able to differentiate central 
control mechanisms of bimanual coordination in healthy 
humans (Shih et al., 2019) and investigate oscillatory 
mechanisms underlying a functional decline of bilateral 
coordination in aging (Figure 2.3.2; Shih et al., in prep).

Recursive hierarchical embedding: Neural implementations in the motor, 
musical, and visual domains
Martins,	M.	J.	D.	 1
1 Recursion and Hierarchies Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The human ability to generate complex hierarchical struc-
tures in language, vision, music, and action is thought to 
be implemented by a Recursive Hierarchical Embedding 
(RHE) capacity. In this research program, we character-
ised the neural underpinnings of RHE, and compared their 
instantiation across domains. Hinging on our previous 
work in the visual domain, we tested well-trained partici-

pants in the motor and music domains, and contrasted 
the application of a recursive rule, which generates new 
hierarchical levels, with an iterative rule, which adds ele-
ments	 within	 a	 fixed	 hierarchical	 level	 without	 generat-
ing new levels. These experiments show that different 
brain networks support the representation or RHE in dif-
ferent domains (Right Superior Temporal Gyrus in music 

2.3.2

2.3.3

Figure 2.3.2  (A) Anti-phase (AP) and in-phase 
(IP) movements represent 2 basic bimanual 
coordinations modes. (B) Coordinative per-
formance was lower during AP as compared 
to IP in both healthy young (Y) and old (O) 
subjects. Importantly, in IP, both age groups 
reach similar performance levels, suggest-
ing that IP movements are resistant to age-
related behavioural decline. (C) Differential 
oscillatory mechanisms underly coordina-
tive performance in Y and O:  while alpha os-
cillations reflect compensatory activation in 
the elderly during in-phase movements, beta 
oscillations reflect additional sensorimotor 
processing in the elderly during anti-phase 
movements.
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Figure 2.3.3.1  Brain activations during the application of a Recursive 
Rule in the motor domain. Application of the Recursive rule yielded 
stronger activations compared to both Iteration and Repetition (no 
rule) in a bilateral network known to be involved in motor planning 
and imagery, including sensorimotor and premotor cortices, cerebel-
lum and lateral occipital cortex (Martins et al. Hum Brain Mapp 2019). 

Figure 2.3.3.2  Lesion-behaviour analyses.  A drift diffusion analy-
sis with the RHE rule generates a drift rate (v’, purple) and boundary 
separation (a’, red) value per participant. IFG lesions were associated 
with lower a’, meaning that participants collected less information 
before reaching a decision, and lesions in the MTG and STG were as-
sociated with lower drift rate, meaning that these patients collected 
information slower.

Recursive Rule Application1 2 3

z = 8
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A ∩ B L R
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1 3
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1 3

(Martins et al., submitted), and a motor planning network 
in the motor domain, Figure 2.3.3.1 (Martins et al., 2019)).
However, our previous behavioural work also suggests 
that during the acquisition of RHE rules, participants use 
similar cognitive resources across domains. To study 
the acquisition phase, we tested 44 patients with left-
hemisphere brain lesions and found that lesions in clas-

sical language brain areas also impaired the acquisition 
of RHE in vision. In addition, patients with impairment in 
processing nested sentences were also impaired in visu-
al recursion (Martins et al., 2019). These results suggest 
that while the acquisition of RHE is instantiated by similar 
resources across domains, the automatic application of 
these rules dissociates.

Interventions to improve sensorimotor function after stroke
Sehm,	B. 1, 2, &	Nikulin,	V. 3, 4
1 Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany
2 Clinic of Neurology, University Hospital Halle, Germany
3 Neural Interactions and Dynamics Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany
4 Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 

Moscow, Russia

We are testing different interventional approaches to im-
prove sensorimotor function and motor learning both in 
healthy people and in patients after stroke. Our aim is to 
improve	the	patients'	behavioural	deficits,	delineate	mech-
anisms that underly recovery, and identify reliable bio-
markers	for	treatment	planning	and	patient	stratification.	
In collaboration with our Russian colleagues (Nazarova et 
al., submitted)  we have shown recently that fractional ani-
sotropy in the internal capsule and the presence of motor 
evoked potentials to TMS are equally important markers 
of poor recovery.  In interventional studies we assess the 
modulatory potential of non-invasive brain stimulation and 

augmented-reality training on sensorimotor functions in 
healthy young and elderly individuals and stroke patients. 
Recently, we tested a short-term high-intensity visuomo-
tor coordination training programme of the paretic arm in 
chronic stroke patients. The setting was a robotic device 
coupled to an exo-sceleton, which on the one hand pre-
vented compensatory movements and on the other, al-
lows the assessment of alterations in behaviour accurate-
ly.	Our	 study	 showed	 significant	 behavioural	 gains	 both	
in objective kinematic parameters as well as in daily ac-
tivity tasks of the arm. Using fMRI before and after train-
ing in relation to kinematic improvements we furthermore 

2.3.4
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Figure 2.3.4 (A left) Example of the reaching results from a representative patient. (B right) Group results from the reaching test. A lower value 
indicates a faster and more accurate performance during the reaching. **p< 0.01, *p< 0.05. (B left) Activation map during the elbow movement 
(movement execution period contrast to rest period). (B middle) Activations in frontal motor network before training positively predict the train-
ing outcome (improvement in reaching performance).Cluster corrected threshold p < 0.05. (B right) Training-induced change in laterality index 
(between the two motor cortices) is correlated with the behavioural improvement (improvement in reaching performance). (C) Simulation on 
MNI	standard	brain	to	illustrate	the	different	electrical	fi	eld	distributions	and	electrode	montages	for	the	two	tDCS	setups.	Anodes	always	posi-
tioned over ipsilesional motor cortices (M1).(D left) Both setups induce complex performance changes across all parameters, as assessed with 
paired t-tests. More positive effects in reaching tasks, negative effects in Position Matching (proprioception) and Ball on Bar Tasks (bilateral 
coordination)	with	both	setups,	respectively.	Overall,	bilateral	tDCS	exhibits	a	more	favourable	outcome	pattern.	(D	right)	Statistical	signifi	cance	
was	assessed	through	permutation-testing	for	all	parameters	(50%	of	data	randomly	switched,	5000	iterations)
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showed	specific	neuroplastic	functional	brain	network	al-
terations related to the behavioural improvements (Figure 
2.3.4, A and B; Shih et al., submitted) that serve as targets 
for non-invasive brain stimulation in subsequent studies.
Another study investigated the modulatory potential of 
transcranial direct current stimulation (tDCS).We dem-
onstrate that tDCS differentially affects proprioception in 

young and elderly participants as assessed with an arm 
position matching task using the robotic device (Muffel 
et al., 2019). In stroke patients, we found that tDCS in-
duces complex behavioural changes on paretic arm func-
tion across different sensorimotor tasks and suggest 
that functional increases go hand in hand with decreases 
(Figure 2.3.4, C and D; Muffel et al., submitted).

Optimising rehabilitation success with music 
Fritz,	T. 1, 2
1 Music and Brain Plasticity Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 
2 Institute for Psychoacoustics and Electronic Music (IPEM), Ghent University, Belgum

In clinical practise music is often used to increase moti-
vation to engage in physical activity, which is known to 
amplify rehabilitation success, e.g. through an increase 
of brain plasticity through enhanced BDNF levels. In re-
cent years we have tested the hypothesis that physical 
exercise can improve through music, beyond making it 
less tedious. We have observed that systematically com-
bining exercise and music-making positively influences 
parameters relevant to rehabilitation success, including 
learning success (with respect to both motor and cogni-
tive parameters), endurance, and perception of exertion 
(Fritz et al., PNAS 2013;110:17784-9), physical pain (Fritz 
et al. Front Psychol 2018), mood (Fritz et al. Front Psychol 
2013;4:921), and social integration (Fritz et al. Front Hum 
Neurosci 2015;9:300). To maximise musical arousal in a 
therapeutic setting, we have devised a method that effec-
tively increases arousal while making music. Participants 
can play music with movements that are perceived as 
particularly exhausting physically, and/or with respect to 
motor control, using music-feedback technology we call 
Jymmin™. Musical arousal is a concept that is central 
to how we believe musical effects can be optimised for 
patients in stroke rehabilitation. Stimuli evoking stronger 

emotional responses are often more likely to also evoke 
stronger neural plasticity, e.g. resulting in more vivid 
memories of emotional experiences. 
We have begun to investigate neural mechanisms of mu-
sical arousal, applying PET-MRI to better understand its 
underlying neuro-chemistry, for example with respect to 
the multi-faceted role of the dopaminergic system (Figure 
2.3.5.1). We have found evidence that not only the D2-
receptor system is involved in mediating the response to 
music, but also musical-arousal-related activity of the D1-
receptor system. 
We are currently implementing the Jymmin™ intervention 
in a multitude of clinics in Germany and Switzerland. In 
a recent pilot experiment with patients doing unilateral 
hand training after stroke we observed that patients were 
more motivated performing a two week hand training with 
music feedback compared to therapy as usual plus pas-
sively listening to music. Figure 2.3.5.2 also depicts that 
all participants perceived the music feedback interven-
tion as more aesthetically pleasing, and that 11 of the 12 
participants showed a stronger increase in their action re-
search arm test values (ARAT) after two weeks of music 
feedback training.

2.3.5

Figure 2.3.5.1  Distribution of striatal BPND from PET 
scans using the D1-sensitive tracer [11C]SCH 23390 
for neutral emotion scans (left), scans with pleas-
ant and unpleasant music stimulus (middle) and 
scans with and without musical stimulus (right; 
indicating effects of musical arousal irrespective 
of valence). The individual differences between 
both corresponding scans are plotted in-between 
with the P value of the corresponding paired t test 
shown above.
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Figure 2.3.5.2  Histograms depicting the results of a 2-week musical-feedback-training.
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Congresses, Workshops, and Symposia
2017

 � Villringer, A. (February). Competence Network Stroke: Brain-
Body-Interaction in Stroke. Symposium. Meeting of Neuro 
Intensive Medicine (ANIM). Deutsche Gesellschaft für 
NeuroIntensivMedizin and Notfallmedizin [German Society 
for Neuro Intensive Medicine and Emergency Medicine] 
(DGNI), Deutsche Schlaganfall-Gesellschaft [German Stroke 
Society] (DSG), Vienna, Austria.

 � Villringer, A., Lachmann, U., & Babayan, A. (March). 5th Mind, 
Brain, and Body Symposium. Mind-Brain Institute at Berlin 
School of Mind and Brain, Humboldt University Berlin, 
Germany. 

 � Sacher, J., & Witte, V. (April). Präklinische Biomarker – Wieviel 
tragen sie zum Verständnis von Veränderungen in der 
Gehirnstruktur und -funktion bei?: Erkenntnisse aus der pop-
ulations-basierten Studie LIFE. [Preclinical Biomarkers - How 
much do they contribute to the understanding of changes in 
brain structure and function?: Findings from the population-
based study LIFE]. Session organizer/chair together with 
J. Sacher, Deutsche Gesellschaft für Neurologie (DGN). 
Symposium. Leipzig.

 � Sehm, B. & Ragert, P. (April). Multimodale Methoden zur 
Evaluation nicht-invasiver Hirnstimulation. [Multimodal 
methods for evaluation of non-invasive brain stimulation]. 
Symposium.	61st	Scientific	Annual	Meeting	of	German	
Society for Clinical Neurophysiology (DGKN). Leipzig, 
Germany.

 � Schroeter, M. L. & Koutsouleris, N. (April). Frühdiagnostik 
psychiatrischer Erkrankungen & Prädiktion von Therapieerfolg 
mittels automatischer Mustererkennungsverfahren: Auf 
dem Weg zu einer personalisierten & biomarkergestützten 
Medizin neuropsychiatrischer Störungen. [Predicting early 
diagnosis & treatment response with pattern recognition al-
gorithms: On the road to personalised & biomarker supported 
medicine for neurodegenerative disease.]. Symposium. 61st 
Scientific	Annual	Meeting	of	German	Society	for	Clinical	
Neurophysiology (DGKN). Leipzig, Germany.

 � Villringer, A., Lachmann, U. (April) Fortbildungsakademie 
Schlaganfall, Kompetenznetz Schlaganfall (KNS) & Centrum 
für Schlaganfallforschung Berlin (CBS) [Training Academy, 
Competence Network Stroke & Centre for Stroke Research 
Berlin]. Satellite-Symposium “Berlin BRAIN & BRAIN PET 
2017”, Berlin, Germany.

 � Horstmann, A. (July). Obesity: Causes and Consequences. 
Symposium. 25th Annual Meeting of the Society for the Study 
of Ingestive Behavior. Montreal, Canada.

 � Sacher, J., & Ketscher, C. (July). Navigating career paths and 
leadership for women in academia. Workshop. Max Planck 
Institute for Human Cognitive and Brain Sciences, Leipzig, 
Germany.

 � Villringer, A., & Krieghoff, V. (July). Summer School, IMPRS 
NeuroCom, Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany.

 � Schroeter, M. L., & Diehl-Schmid, J. (October). Individualizing 
diagnosis and treatment in frontotemporal lobar degen-
erations – On the way to personalized medicine. World 
Psychiatric Association (WPA). Symposium. XVII World 
Congress of Psychiatry & Annual Meeting German Society 
for Psychiatry, Psychotherapy and Neurology (DGPPN), 
Berlin.

 � Grund, M. (November). N² Science Communication 
Conference. Conference. Museum für Naturkunde Berlin, 
Germany.

 � Villringer, A., & Lachmann, U. (November). 8. Prophylaxe-
Seminar des Kompetenznetzes Schlagfanfall [8th Prophylaxis 
Seminar of the Competence Network Stroke]. Symposium. 
Competence Network Stroke (KNS), Berlin, Germany.

2018 
 � Villringer A., Lachmann, U., & Babayan, A. (March). 6th Mind, 

Brain, and Body Symposium. Mind-Brain Institute at Berlin 
School of Mind and Brain, Humboldt University Berlin, 
Germany. 

 � Villringer, A., & Krieghoff, V. (June). Summer School, IMPRS 
NeuroCom, Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany.

 � Klotzsche, F. (September): Influences of cardiac cycle on per-
ceived distances to threatful and harmless objects - A study in 
immersive virtual reality. Hands-on workshop. Central Kolleg, 
supported by the CENTRAL Network (https://www.projekte.
hu-berlin.de/de/central/centralkollegs/). 

 � Nikulin, V. (October). Cortical Codes: Control & Perception. 
Conference. National Research University Higher School of 
Economics, Moscow, Russia.

 � Sacher, J., Ketscher, C., & Zheleva, G. (October) 21st Century 
Leadership Style – How to successfully manage evolving 
research projects. Workshop. Svenja Neupert, Kompetenzia 
International. Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany.

 � Villringer, A. (October). Dementia Prevention by Stroke 
Prevention. World Health Summit Satellite Symposium, 
Berlin, Germany.

 � Villringer, A., & Lachmann, U. (November). 9. Prophylaxe-Seminar 
des Kompetenznetzes Schlagfanfall [9th Prophylaxis Seminar of 
the Competence Network Stroke]. Symposium. Competence 
Network Stroke (KNS), Berlin, Germany.

 � Klotzsche, F. (December): Influences of cardiac cycle on per-
ceived distances to threatful and harmless objects - A study in 
immersive virtual reality. Hands-on workshop. Central Kolleg, 
supported by the CENTRAL Network (https://www.projekte.
hu-berlin.de/de/central/centralkollegs/). 

2019
 � Villringer, A., Lachmann, U. & Babayan, A. (March). 7th 

Mind, Brain, and Body Symposium. Symposium. Mind-
Brain Institute at Berlin School of Mind and Brain, Kaiserin-
Friedrich-Haus, Berlin, Germany.

 � Nikulin, V. (April). Active and passive methods of brain 
research. VI. International school for young scientists. 
Workshop. National Research University Higher School of 
Economics, Moscow, Russia.
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 � Baczkowski, B., Janssen, L., Paerisch, M., Schaare, L., & v. 
Scherpenberg, C. (May). CBS Open Science Kick-Off Meeting. 
Workshop. Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany.

 � Fritz, T. (May). Network Meeting of Sports and Innovation. 
Symposium. Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany. 

 � Khosrov, G. (June). Introduction to Brain-Computer Interfaces. 
Workshop. IMPRS NeuroCom Summerschool. Max Planck 
Institute for Human Cognitive and Brain Sciences, Leipzig, 
Germany. 

 � Schroeter, M. L., & Koutsouleris, N. (June). Predicting diag-
nosis & treatment in neuropsychiatric disorders with pattern 
recognition algorithms. Symposium. World Federation of 
Societies of Biological Psychiatry (WFSBP), 14th World 
Congress of Biological Psychiatry, Vancouver, Canada.

 � Villringer, A., & Krieghoff, V. (June). Summer School, IMPRS 
NeuroCom, Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany.

 � Schroeter, M. L., & Koutsouleris, N. (November). Personalizing 
diagnosis & treatment in neuropsychiatric disorders with 
machine learning in neuroimaging data. Symposium. Annual 
Meeting German Society for Psychiatry, Psychotherapy and 
Neurology (DGPPN), Berlin, Germany.

 � van Scherpenberg, C., & Martin, S. (November). Doing Good 
– Scientific Practice under Review. Symposium. Max Planck 
Institute for Human Cognitive and Brain Sciences, Leipzig, 
Germany.

 � Villringer, A., & Lachmann, U. (November). 10. Prophylaxe-
Seminar des Kompetenznetzes Schlagfanfall [10th Prophylaxis 
Seminar of the Competence Network Stroke]. Symposium. 
Competence Network Stroke (KNS), Berlin, Germany.

 � Villringer, A. (December). Learning, Motivation and Emotion, 26. 
Jahrestagung Deutsche Gesellschaft für Neurorehabilitation 
[26th Annual Meeting German Society for Neurorehabilitation], 
Leipzig, Germany.

Degrees
Habilitation Theses
2019

 � Witte, V. Einfluss von Adipositas, Ernährung und 
Stoffwechselveränderungen auf die Gehirnstruktur und -funk-
tion. [Influence of obesity, nutrition and metabolic changes 
on brain structure and function]. Leipzig University, Germany.

PhD Theses
2017

 � Barth, C. Exploring structural and functional brain dynamics 
across the menstrual cycle. Leipzig University, Germany.

 � Bianco, R. Principles of action planning in music produc-
tion: Evidence from fMRI and EEG studies. Leipzig University, 
Germany.

 � Bisenius, S. Validation of diagnostic imaging criteria for pri-
mary progressive aphasia. Leipzig University, Germany.

 � Grellmann, C. Combining brain imaging and genetic data us-
ing fast and efficient multivariate correlation analysis. Leipzig 
University, Germany.

 � Gundlach, C. Modulation neuronaler Oszillationen durch tran-
skranielle Wechselstromstimulation und deren Einfluss auf 
die Somatosensorik. [Modulation of neuronal oscillations by 
transcranial alternating current stimulation and its influence 
on somatosensory]. Leipzig University, Germany.

 � Hoff, M. Motorische Plastizität über die Lebensspanne 
– Untersuchungen zur Reduktion altersbedingter feinmo-
torischer Defizite durch motorisches Lernen und nicht-
invasiver Hirnstimulation. [Motor plasticity over the lifespan 
- Investigations on the reduction of age-related motor deficits 
through motor learning and non-invasive brain stimulation]. 
Leipzig University, Germany.

 � Kaminski, E. Augmenting dynamic balance performance by 
transcranial direct current stimulation. Leipzig University, 
Germany.

 � Kumar, S. A. EEG study on the differences between lean and 
obese individuals during regulation of food desire. Leipzig 
University, Germany.

 � Lehmann, N. Hirnstrukturelle Korrelate der Steigerung mo-
torischer Lernprozesse durch eine neuromodulatorische 
Voraktivierung. [Brain structural correlates of the enhance-
ment of motor learning processes by neuromodulatory pre-
activation]. Leipzig University, Germany.

 � Radenbach, C. Stress und modellbasiertes 
Entscheidungsverhalten. [Stress and model-based decision-
making behavior]. Leipzig University, Germany.

 � Schrimpf, A. Weight-related stigmatization and its impact on 
behavioral adaptations, affect, and parasympathetic activity 
during social information processing – a cross-cultural com-
parison. Leipzig University, Germany.

2018
 � Khalil, A. A. A. Improved assessment of hypoperfusion, blood-

brain barrier disruption, and ischemic cellular damage in 
stroke patients using magnetic resonance imaging. Charité 
University Medicine Berlin, Germany.

 � Mathar, D. Obesity is associated with insufficient behavorial 
adaptation. Leipzig University, Germany.

 � Rjosk, V. Augmenting motor performance with mirror visual 
feedback (MVF): Underlying mechanisms and neural corre-
lates. Leipzig University, Germany.
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2019
 � Forschack, N., Conscious and unconscious somatosensory 

perception and its modulation by attention. Leipzig University, 
Germany. 

 � Hardikar, S. Taste perception in obesity. Leipzig University, 
Germany.

 � Huhn, S. The impact of nutrition on hippocampal function 
– Results of a literature review and a randomized controlled 
trial. Leipzig University, Germany.

 � Kharabian, S. M. Cardiovascular risk factors in ageing brains: 
Functional and structural correlates of modifiable risk factors 
of brain ageing and Alzheimer’s disease among older individu-
als. Leipzig University, Germany.

 � Kynast, J. What makes us social? Investigating mindreading 
from the eyes in adulthood. Leipzig University, Germany.

 � Mehl, N. About self-regulation and automatic behavior in the 
context of obesity. Leipzig University, Germany.

 � Morys, F. Characterising and altering maladaptive behaviours 
and tendencies in obesity. Leipzig University, Germany.

 � Polyakova, M. Searching for pathomechanisms of late life 
minor depression – a combined MRI, biomarker and meta-
analysis study. Leipzig University, Germany.

 � Preusser, S. Der ventral kortikale Verarbeitungspfad der 
Berührungswahrnehmung. [The ventral cortical processing 
pathway of touch perception]. Leipzig University, Germany. 

 � Woost, L. Der Einfluss von körperlichen und kognitiv-räu-
mlichem Training auf Kognition, Wachstumsfaktoren und 
hippocampale Plastizität. [The influence of physical and 
cognitive-spatial training on cognition, growth factors and hip-
pocampal plasticity]. Leipzig University, Germany.

 � Zhang, R. Obesity, brain microstructure, and cognition in age-
ing. Leipzig University, Germany.

MD Theses
2017

 � Ciupek, M. Untersuchung zur Auswirkung von Musik unter-
schiedlicher Valenz auf den Blutdruck und die Wahrnehmung 
bei schwangeren und nicht-schwangeren Frauen. [Study on 
the effect of music of different valences on blood pressure 
and perception in pregnant and non-pregnant women]. Leipzig 
University, Germany.

 � Golchert, J. Structural and functional brain organization un-
derlying spontaneous and deliberate mind-wandering. Charitè 
University Medicine Berlin, Germany.

 � Liebau, G. R. I. Der Einfluss musikinduzierter Valenz auf die 
spatiotemporalen Gangparameter von Parkinson-Patienten. 
[The influence of music induced valence on the spatiotempo-
ral gait parameters of Parkinson’s patients]. Leipzig University, 
Germany.

 � Simmank, J. Biasing reward-based decision-making in obe-
sity. Leipzig University, Germany.

2018
 � Herzig, S. Depression und Fatigue bei Patienten mit chro-

nischer Hepatitis C. [Depression and fatigue in patients with 
chronic hepatitis C]. Leipzig University, Germany.

 � Huss, M. Kognitive Flexibilität bei Zwangsstörungen und 
mögliche Einflussfaktoren: Eine Fall-Kontroll-Studie. [Cognitive 
flexibility in obsessive-compulsive disorder and possible 
influencing factors: A case-control study]. Leipzig University, 
Germany.

 � Kastner, L. Adipositas- und geschlechtsspezifische Einflüsse 
auf phasische kardiale Reaktionen bei verstärkendem Lernen. 
[Obesity and gender-specific influences on phasic cardiac 
responses during strengthening learning]. Leipzig University, 
Germany.

 � Mühlberg, C. Der Einfluss der Faktoren Geschlecht und 
Adipositas auf die inhibitorische Kontrolle. [The influence 
of gender and obesity factors on inhibitory control]. Leipzig 
University, Germany.

 � Rohner, A.-C. Auswirkungen von chronischen und akutem 
Stress auf die Herzfrequenzvariabilität bei Männern und 
postmenopausalen Frauen der gleichen Altersgruppe. [Effects 
of chronic and acute stress on heart rate variability in men 
and postmenopausal women of the same age group]. Charité 
University Medicine Berlin, Germany.

 � Stockert, A. Untersuchung behavioraler, elektrophysiologis-
cher und neuroanatomischer Korrelate spektrotemporaler 
Repräsentationen im Kontext auditiver Sprachwahrnehmung. 
[Investigation of behavioral, electrophysiological and neuro-
anatomical correlates of spectrotemporal representations in 
the context of auditory speech perception]. Leipzig University, 
Germany.

 � Wilbertz, T. T. Die Beziehung von Inhibitionsfähigkeit und 
multidimensionaler Impulsivität als Risikofaktoren für 
Suchterkrankungen. [The relationship between inhibition abil-
ity and multidimensional impulsivity as risk factors for addic-
tion diseases]. Leipzig University, Germany.

2019
 � Grundeis, F. The influence of non-invasive prefrontal/frontal 

brain stimulation on food reappraisal abilities and calorie con-
sumption in obese females. Leipzig University, Germany.

 � Koj, S. Der modulierende Einfluss von musikalischem 
Feedback auf das unilaterale repetitive Handtraining von 

Patienten nach Schlaganfall – Eine Pilotstudie. [The modulat-
ing influence of musical feedback on the unilateral repeti-
tive hand training of stroke patients - A pilot study]. Leipzig 
University, Germany.



76

Plasticity

Appointments
2019

 � Horstmann, A. Professorship, University of Helsinki, Finland.
 � Maennel, C. Guest-Professorship, Stand-in W3 Professorship. 

University of Potsdam, Germany.

 � Maennel, C. W2 Professorship, Charité University Medicine 
Berlin, Germany.

 � Witte, V. W2 Professorship (declined), University of 
Greifswald, Germany.

Awards
2017

 � Beyer, F. Poster Price. Annual Conference of the German 
Society of Neurology (DGN), Leipzig, Germany.

 � Maennel, C. SNL Post-Doctoral Abstract Merit Award. Society 
for the Neurobiology of Language (SNL), Baltimore, USA.

 � Mehl, N. Best Poster Prize. 33rd Annual Conference of the 
German Obesity Society, Potsdam, Germany.

 � Mehl, N. New Investigator Travel Award. 25th Annual Meeting 
of the Society for the Study of Ingestive Behavior, Montreal, 
Canada.

 � Morys, F. Best Poster Prize. 33rd Annual Conference of the 
German Obesity Society, Potsdam, Germany.

 � Muffel, T. Best Poster Award. MindBrainBody Symposium, 
Berlin School of Mind & Brain, Germany.

 � Schroeter, M. L. Travel stipend. European Congress of 
Radiology (ECR), Vienna, Austria (together with Leonie 
Lampe).

 � Schroeter, M. L. Poster Award. 24th International Symposium 
about Current Issues and Controversies in Psychiatry – 
Crisis in Psychiatry?, Barcelona, Spain (together with Maryna 
Polyakova).

 � Schroeter, M. L. Poster Award. 61st Annual Meeting German 
Society for Clinical Neurophysiology (DGKN), Leipzig, 
Germany (together with Jana Kynast et al.).

 � Schroeter, M. L. Travel Award. XVII World Congress of 
Psychiatry of the World Psychiatric Association (WPA), Berlin, 
Germany (together with Franziska Albrecht et al.).

 � Schroeter, M. L. Travel Award. XVII World Congress of 
Psychiatry of the World Psychiatric Association (WPA), Berlin, 
Germany (together with Tommaso Ballarini et al.).

 � Shih, P.-C. Poster award - judge’s prize. 7th Summer School of 
International Max Planck Research School on Neuroscience 
of Communication, London, UK. 

 � Shih, P.-C. Poster award - audience’s prize. 7th Summer 
School of International Max Planck Research School on 
Neuroscience of Communication, London, UK.

 � Witte, V. Sign Up! Careerbuilding. Max Planck Society and 
European Academy for Women in Politics and Economics 
Berlin, Munich/Berlin, Germany.

2018
 � Barth, C. Dissertation Award. Thesis title: Exploring structural 

and functional brain dynamics across the menstrual cycle. 
Leipzig University, Germany.

 � Bisenius, S. Promotionspreis der Medizinischen Fakultät. 
[Best Dissertation Award of the Faculty of Medicine.], Leipzig 
University, Germany.

 � Heinrich, M. Deutschlandstipendium. Leipzig University, 
Germany.

 � Hofmann, S. Research Talent grant. Dutch Research Council, 
NL.

 � Janssen, L. Nominee for the Lindau Nobel Laureate Meeting. 
Max Planck Society, Germany.

 � Schroeter, M. L. Leibniz Travel Grant. Research Academy 
Leipzig for ICFTD Meeting Sydney (together with Franziska 
Albrecht et al.).

 � Schroeter, M. L. Leibniz Travel Grant. Research Academy 
Leipzig for ICFTD Meeting Sydney (together with Tommaso 
Ballarini et al.).

 � Schroeter, M. L. Congress Travel Grant. DAAD for ICFTD 
Meeting Sydney (together with Tommaso Ballarini et al.).

 � Woost, L. Hannelore Kohl Förderpreis. ZNS – Hannelore 
Kohl Stiftung für Unfallverletzte mit Schäden des Zentralen 
Nervensystems, Bonn, Germany.

 � Zsido, R. G. Best Poster Presentation Award. Matariki Winter 
School and Symposium 2018: Sex Hormones and the Brain, 
Tübingen, Germany. 

2019 
 � Barth, C. Best Poster Presentation Award. 32nd Annual 

Meeting European College of Neuropsychopharmacology 
(ECNP), Copenhagen, Denmark.

 � Heinrich, M. Deutschlandstipendium. Leipzig University, 
Germany.

 � Muffel, T. Best Teaching Award, Free University of Berlin, 
Department of Education & Psychology, Berlin, Germany.

 � Schroeter, M. L. Travel Grant. Alzheimer Research Initiative 
for WFSBP Congress Vancouver (together with Franziska 
Albrecht et al.).

 � Schroeter, M. L. Leibniz Travel Grant. Research Academy 
Leipzig for WFSBP Congress Vancouver (together with 
Franziska Albrecht et al.).

 � Shih, P.-C. Trainee Professional Development Award. Society 
of Neuroscience (SfN), Chicago, USA.
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 � Thieleking, R. Earlier Career Researcher Award. 
Neuroendocrinology and Brain Imaging, Rome, Italy.

 � Zsido, R. G. Travel Award. 32nd Annual Meeting European 
College of Neuropsychopharmacology (ECNP), Copenhagen, 
Denmark. 

 � Zsido, R. G. Best Poster Presentation Award. 8th IMPRS 
NeuroCom Summer School. Max Planck Institute for Human 
Brain and Cognitive Sciences, Leipzig, Germany. 

Publications
Books and Book Chapters

Barth, C. (2017). Exploring structural and functional brain 
dynamics across the menstrual cycle. MPI Series in Human 
Cognitive and Brain Sciences: Vol. 189. Leipzig: Max Planck 
Institute for Human Cognitive and Brain Sciences.

Dietrich, A. (2017). Food craving regulation in the brain: The 
role of weight status and associated personality aspects. MPI 
Series in Human Cognitive and Brain Sciences: Vol. 182. Leipzig: 
Max Planck Institute for Human Cognitive and Brain Sciences.

Forschack, N. (2019). Conscious and unconscious somato-
sensory perception and its modulation by attention. MPI Series 
in Human Cognitive and Brain Sciences: Vol. 200. Leipzig: Max 
Planck Institute for Human Cognitive and Brain Sciences.

Fritz, T. H. (2017). Jymmin - The medical potential of musi-
cal euphoria. In M. Lesaffre, P.-J. Maes, & M. Leman (Eds.), The 
Routledge companion to embodied music interaction (pp. 278-
283). London: Routledge.

Fritz, T. H. (in press). Warum Musik Verbindet: Untersuchung 
aus neurowissenschaftlicher Perspektive. In K. Bradler (Ed.), 
Musik und Ethik: Ein Symposium an der Brandenburgischen 
Technischen Universität Cottbus-Senftenberg. Waxmann.

Fritz, T. H. (in press). Why do people exercise to music? In W. 
F. Thompson, & K. N. Olsen (Eds.), The science and psychology of 
music: From Beethoven at the office to Beyoncé at the gym.

Hoff, M. (2018). Motorische Plastizität über die Lebensspanne: 
Untersuchungen zur Reduktion altersbedingter feinmotori-
scher	 Defizite	 durch	 motorisches	 Lernen	 und	 nicht-invasi-
ver Hirnstimulation. MPI Series in Human Cognitive and Brain 
Sciences: Vol. 191. Leipzig: Max Planck Institute for Human 
Cognitive and Brain Sciences.

Horstmann, A. (2019). Adipositas, Kognition und 
Entscheidungsverhalten. In M. De Zwaan (Ed.), Psychosoziale 
Aspekte der Adipositas-Chirurgie (pp. 101-113). Berlin, Germany: 
Springer. Doi:10.1007/978-3-662-57364-8_7.

Huhn, S. (2019). The impact of nutrition on hippocampal func-
tion: Results of a literature review and a randomized controlled 
trial. MPI Series in Human Cognitive and Brain Sciences: Vol. 197. 
Leipzig: Max Planck Institute for Human Cognitive and Brain 
Sciences.

Huhn, S., & Witte, A. V. (2017). Effects of resveratrol on cogni-
tive functions. In R. R. Watson (Ed.), Nutrition and functional foods 
for healthy aging  (pp. 283 -292 ). London: Elsevier. doi:10.1016/
B978-0-12-805376-8.00024-1.

Kaminski, E. (2017). Augmenting dynamic balance perfor-
mance by transcranial direct current stimulation. MPI Series 
in Human Cognitive and Brain Sciences: Vol. 188. Leipzig: Max 
Planck Institute for Human Cognitive and Brain Sciences.

Kozlov, M., Kalloch, B., Horner, M., Bazin, P.-L., Weiskopf, N., 
&	Möller,	H.	E.	(2019).	Patient-specific	RF	safety	assessment	in	
MRI: Progress in creating surface-based human head and shoul-
der models. In Brain and human body modeling: Computational 
human modeling at EMBC 2018  (pp. 245-282). Cham: Springer. 
Doi:10.1007/978-3-030-21293-3_13.

Kynast, J. (2019). What makes us social?: Investigating min-
dreading from the eyes in adulthood. MPI Series in Human 
Cognitive and Brain Sciences: Vol. 199. Leipzig: Max Planck 
Institute for Human Cognitive and Brain Sciences.

Lehmann, N., & Taubert, M. (2018). Exercise-induced improve-
ment in motor learning. In H. Budde (Ed.), The exercise effect 
on mental health (pp. 188-224). Boca Raton, FL: CRC Press. 
doi:10.4324/9781315113906.

Nierula, B., & Sanchez-Vives, M. V. (2019). Can BCI paradigms 
induce feelings of agency and responsibility over movements? 
In Brain-computer interface research: A state-of-the-art summary 
7 (pp. 103-114). Cham: Springer. Doi:10.1007/978-3-030-05668-
1_10.

Rjosk, V. (2018). Augmenting motor performance with mirror 
visual feedback (MVF): Underlying mechanisms and neural cor-
relates. MPI Series in Human Cognitive and Brain Sciences: Vol. 
192. Leipzig: Max Planck Institute for Human Cognitive and Brain 
Sciences.

Sehm, B., & Obrig, H. (2017). Transkranielle Gleichstrom-
Stimulation zur Unterstützung der Sprachtherapie: 
Wissenschaftliche Evidenz und klinische Perspektiven. In K. 
Bilda, J. Mühlhaus, & U. Ritterfeld (Eds.), Neue Technologien in 
der Sprachtherapie (pp. 151-162). Stuttgart: Thieme.

Udden,	J.,	&	Männel,	C.	(2018).	Artificial	grammar	learning	and	
its neurobiology in relation to language processing and develop-
ment. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford 
Handbook of Psycholinguistics  (2nd ed., pp. 755-783). Oxford: 
Oxford University Press.

Watson, J., Welman, K. E., & Sehm, B. (2017). The effect of exer-
cise on motor function and neuroplasticity in Parkinson’s diseas. 
In R. Watson (Ed.), Physical activity and the aging brain: Effects 
of exercise on neurological function (pp. 133-139). Amsterdam: 
Elsevier. doi:10.1016/B978-0-12-805094-1.00013-7.

Journal Articles
Adamaszek, M., D’Agata, F., Steele, C., Sehm, B., Schoppe, 

C., Strecker, K., Woldag, H., Hummelsheim, H., & Kirkby, K. C. 
(2019). Comparison of visual and auditory emotion recogni-
tion in patients with cerebellar and Parkinson’s disease. Social 
Neuroscience, 14(2), 195-207. doi:10.1080/17470919.2018.143
4089.

Alavash, M., Lim, S.-J., Thiel, C., Sehm, B., Deserno, L., & 
Obleser, J. (2018). Dopaminergic modulation of hemodynamic 
signal variability and the functional connectome during cognitive 
performance. NeuroImage, 172, 341-356. doi:10.1016/j.neuroim-
age.2018.01.048.
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Albrecht, F., Ballarini, T., Neumann, J., & Schroeter, M. L. (2018). 
FDG-PET hypometabolism is more sensitive than MRI atro-
phy in Parkinson’s disease: A whole-brain multimodal imaging 
meta-analysis. NeuroImage: Clinical, 21: 101594. doi:10.1016/j.
nicl.2018.11.004.

Albrecht, F., Bisenius, S., Neumann, J., Whitwell, J., & Schroeter, 
M. L. (2019). Atrophy in midbrain & cerebral/cerebellar pedunculi 
is characteristic for progressive supranuclear palsy: A double-
validation whole-brain meta-analysis. NeuroImage: Clinical, 22: 
101722. doi:10.1016/j.nicl.2019.101722.

Albrecht, F., Bisenius, S., Schaack, R. M., Neumann, J., & 
Schroeter, M. L. (2017). Disentangling the neural correlates of 
corticobasal syndrome and corticobasal degeneration with sys-
tematic and quantitative ALE meta-analyses. npj Parkinson’s 
Disease, 3: 12. doi:10.1038/s41531-017-0012-6.

Albrecht, F., Mueller, K., Ballarini, T., Lampe, L., Diehl-Schmid, 
J., Fassbender, K., Fliessbach, K., Jahn, H., Jech, R., Kassubek, 
J., Kornhuber, J., Landwehrmeyer, B., Lauer, M., Ludolph, A. 
C., Lyros, E., Prudlo, J., Schneider, A., Synofzik, M., Wiltfang, J., 
Danek, A., Otto, M., FTLD-Consortium, & Schroeter, M. L. (2019). 
Unraveling corticobasal syndrome and alien limb syndrome with 
structural brain imaging. Cortex, 117, 33-40. doi:10.1016/j.cor-
tex.2019.02.015.

Alkemade, A., de Hollander, G., Keuken, M. C., Schäfer, A., Ott, 
D. V. M., Schwarz, J., Weise, D., Kotz, S. A., & Forstmann, B. U. 
(2017). Comparison of T2*-weighted and QSM contrasts in 
Parkinson’s disease to visualize the STN with MRI. PLoS One, 
12(4): e0176130. doi:10.1371/journal.pone.0176130.

Antonenko, D., Nierhaus, T., Meinzer, M., Prehn, K., Thielscher, 
A., Ittermann, B., & Flöel, A. (2018). Age-dependent effects of 
brain stimulation on network centrality. NeuroImage, 176, 71-82. 
doi:10.1016/j.neuroimage.2018.04.038.

Apostolova, I., Lange, C., Mäurer, A., Suppa, P., Spies, L., 
Grothe, M. J., Nierhaus, T., Fiebach, J. B., Steinhagen-Thiessen, 
E., Buchert, R., & Alzheimer’s Disease Neuroimaging Initiative 
(2018). Hypermetabolism in the hippocampal formation of 
cognitively impaired patients indicates detrimental maladapta-
tion. Neurobiology of Aging, 65, 41-50. doi:10.1016/j.neurobio-
laging.2018.01.002.

Babayan, A., Erbey, M., Kumral, D., Reinelt, J., Reiter, A., Röbbig, 
J., Schaare, H. L., Uhlig, M., Anwander, A., Bazin, P.-L., Horstmann, 
A., Lampe, L., Nikulin, V. V., Okon-Singer, H., Preusser, S., Pampel, 
A., Rohr, C. S., Sacher, J., Thöne-Otto, A. I. T., Trapp, S., Nierhaus, T., 
Altmann, D., Arélin, K., Blöchl, M., Bongartz, E., Breig, P., Cesnaite, 
E., Chen, S., Cozatl, R., Czerwonatis, S., Dambrauskaite, G., 
Paerisch, M., Enders, J., Engelhardt, M., Fischer, M. M., Forschack, 
N., Golchert, J., Golz, L., Guran, C. A., Hedrich, S., Hentschel, N., 
Hoffmann, D. I., Huntenburg, J. M., Jost, R., Kosatschek, A., 
Kunzendorf, S., Lammers, H., Lauckner, M., Mahjoory, K., Kanaan, 
A. S., Mendes, N., Menger, R., Morino, E., Naethe, K., Neubauer, 
J., Noyan, H., Oligschläger, S., Panczyszyn-Trzewik, P., Poehlchen, 
D., Putzke, N., Roski, S., Schaller, M.-C., Schieferbein, A., Schlaak, 
B., Schmidt, R., Gorgolewski, K. J., Schmidt, H. M., Schrimpf, A., 
Stasch, S., Voss, M., Wiedemann, A., Margulies, D. S., Gaebler, M., 
& Villringer, A. (2019). A mind-brain-body dataset of MRI, EEG, 
cognition, emotion, and peripheral physiology in young and old 
adults. Scientific Data, 6: 180308. doi:10.1038/sdata.2018.308.

Bae, Y. J., Reinelt, J., Netto, J., Uhlig, M., Willenberg, A., Ceglarek, 
U., Villringer, A., Thiery, J., Gaebler, M., & Kratzsch, J. (2019). Salivary 
cortisone, as a biomarker for psychosocial stress, is associated 
with state anxiety and heart rate. Psychoneuroendocrinology, 101, 
35-41. doi:10.1016/j.psyneuen.2018.10.015.

Bahnmueller, J., Maier, C. A., Göbel, S. M., & Moeller, K. (2019). 
Direct evidence for linguistic influences in two-digit number pro-
cessing. Journal of Experimental Psychology: Learning, Memory, 
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Ballarini, T., Albrecht, F., Mueller, K., Jech, R., Diehl-Schmid, J., 
Fliessbach, K., Kassubek, J., Lauer, M., Fassbender, K., Schneider, 
A., Synofzik, M., Wiltfang, J., FTLD Consortium, Otto, M., & 
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Villringer, A., & Nikulin, V. V. (2019). Power and temporal dynamics 
of alpha oscillations at rest differentiate cognitive performance 
involving sustained and phasic cognitive control. NeuroImage, 
188, 135-144. doi:10.1016/j.neuroimage.2018.12.001.

Figure 2.2.3
(upper part) Adapted from Albrecht, F., Mueller, K., Ballarini, 

T., Lampe, L., Diehl-Schmid, J., Fassbender, K., Fliessbach, K., 
Jahn, H., Jech, R., Kassubek, J., Kornhuber, J., Landwehrmeyer, 
B., Lauer, M., Ludolph, A. C., Lyros, E., Prudlo, J., Schneider, A., 
Synofzik, M., Wiltfang, J., Danek, A., Otto, M., FTLD-Consortium, 
& Schroeter, M. L. (2019). Unraveling corticobasal syndrome and 
alien limb syndrome with structural brain imaging. Cortex, 117, 
33-40. doi:10.1016/j.cortex.2019.02.015.

(lower part) Adapted from Ballarini, T., Albrecht, F., Mueller, K., 
Jech, R., Diehl-Schmid, J., Fliessbach, K., Kassubek, J., Lauer, M., 
Fassbender, K., Schneider, A., Synofzik, M., Wiltfang, J.0; FTLD 
Consortium Germany, 4RTNI,   Otto, M., Schroeter, M. L. (2019). 
Disentangling brain functional network remodeling in corticoba-
sal syndrome - A multimodal MRI study. NeuroImage: Clinical, 25, 
102112. doi: 10.1016/j.nicl.2019.102112. 
Figure 2.3.2

Adapted from Shih, P.-C., Steele, C., Nikulin, V. V., Villringer, A., 
&	Sehm,	B.	(2019).	Kinematic	profiles	suggest	differential	control	
processes involved in bilateral in-phase and anti-phase move-
ments. Scientific Reports, 9(1): 3273. doi:10.1038/s41598-019-
40295-1. 
Figure 2.3.3.1

Adapted from Martins, M., Bianco, R., Sammler, D., & Villringer, 
A. (2019). Recursion in action: An fMRI study on the generation 
of new hierarchical levels in motor sequences. Human Brain 
Mapping, 40(9), 2623-2638. doi:10.1002/hbm.24549.
Figure 2.3.3.2

Adapted from Martins, M., Krause, C. D., Neville, D., Pino, D., 
Villringer, A., & Obrig, H. (2019). Recursive hierarchical embedding 
in vision is impaired by posterior middle temporal gyrus lesions. 
Brain, 142(10), 3217-3229. doi:10.1093/brain/awz242.
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Our long term research agenda is to develop and apply non-invasive magnetic 
resonance imaging (MRI) methods to reliably characterise the detailed ana-
tomical and functional micro-organisation of the human brain.
Understanding the normal and diseased human brain crucially depends on 
reliable knowledge of its anatomical microstructure and functional micro-or-
ganisation (e.g., cortical layers, columns, and stripes; Figure 3). To date, the 
micro-organisation can only be determined using invasive methods, such as 
post-mortem histology or invasive electrophysiology. This limits neuroscience, 
clinical research, and diagnosis.
The non-invasive characterisation of the micro-organisation and its changes in 
health	and	disease	poses	significant	challenges.	Several	orders	of	magnitude	
of spatial scale need to be spanned and the multitude of different anatomical 
and physiological structures need to be captured and integrated (Figure 3).

Thus, unprecedented spatial resolution, minimal artifact levels, and high tissue 
specificity	must	be	achieved.	To	address	these	extraordinary	methodological	
challenges, we pursue an integrated interdisciplinary approach consisting of:

1. MR physics developments
2. Biophysical modelling and data analysis
3.	 Neuroscientific	applications	and	validation

The successful development of in-vivo histology using MRI (hMRI) of the ana-
tomical and fMRI of the functional micro-organisation hold great potential for 
research	and	clinical	applications.	For	the	first	time,	investigations	of	the	struc-
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ture-function relationship and plasticity at the microstruc-
tural level would become feasible in the human brain on a 
large scale. This will allow for an improved understanding 
of how brain structure determines function and functional 
demands affect structure. Microstructure imaging is ex-
pected to provide sensitive biomarkers of nervous system 
changes due to trauma or neurodegeneration, providing 
important early biomarkers in personalised medicine and 
clinical trials.
Over the last three years and after crucial start-up work, 
the research in the Department of Neurophysics has fo-
cussed more on in-vivo applications of the recently devel-

oped methods for microstructure and functional imaging. 
The cortex in general and visual cortex in particular were 
early targets of our research into microstructure and its 
relation to function (e.g., 3.1.4, 3.1.5, 3.3.1, 3.3.2). The de-
velopment and application of advanced histological ap-
proaches for validation and reference data generation has 
continued	(e.g.,	3.2.2,	3.3.3).	Developments	in	the	fi	eld	of	
MR physics have continued improving resolution and data 
quality, enabling robust data acquisition at ultra-high reso-
lution (e.g., 800µm resolution in diffusion and functional 
MRI, 3.1.1, 3.1.4; and <500µm resolution in quantitative 
multi-parameter mapping, 3.1.3).

Figure	3.		Examples	of	neocortical	organisation	on	the	macroscopic	(A–C),	mesoscopic	(D–G),	and	microscopic	(H–J)	scales,	spanning	fi	ve	
orders of magnitude in resolution and various structural features. (A) cytoarchitectonic parcellation, (B) myeloarchitectonic parcellation, (C) 
recent in-vivo cortical parcellation based on combining structural and functional MRI. The neocortex can be subdivided into six distinct layers 
based on cytoarchitecture (D, left) or myeloarchitecture (D, right). Mesoscopic ontogenetic columns (columns of increased neuron cell body 
density and decreased myelin density) are indicated by arrows in (D). (E) High resolution T2*-weighted MR image showing distinct cortical lay-
ers. Functional units are also found on the mesoscopic scale. Examples of these functional cortical columns are (F) ocular dominance and (G) 
orientation	preference	columns	in	human	visual	cortex.	On	the	microscopic	scale,	neuronal	cell	bodies,	myelinated	fi	bres,	and	glial	cells	are	
important	constituents	of	the	cortex.	(H)	Microscopy	shows	neuronal	cell	bodies,	myelinated	fi	bres	and	astroglia.	(I)	myelin	sheath	around	ax-
onal	fi	bres	imaged	using	electron	microscopy.	(J)	Iron	localised	in	oligodendrocytes	and	myelinated	fi	bres.	Reprinted	from	Edwards	et	al.	(2018,	
NeuroImage,	182,	184-206),	which	also	provides	a	comprehensive	list	of	references	for	the	different	subfi	gures.	
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Developments
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MR Physics developments focussed on the 7T and 3T 
Connectom MRI platforms (300mT/m high performance 
gradient system, which is one of three worldwide), since 
they offer superior contrast/signal-to-noise ratio (CNR/
SNR). Several studies combined the strength of 7T MRI 
in high resolution functional and anatomical imaging with 
the strength of the Connectom MRI in diffusion weight-
ed imaging (DWI). For example, the combination of 7T 
fMRI-based retinotopy with Connectom DWI tractogra-
phy	 allowed	 for	 functional	 specificity	 of	 U-fibers	 in	 the	
visual system (3.3.2). The ultra-high resolution DWI be-
came possible by careful integration of advanced pulse 
sequences with the latest hardware developments such 
as flexible radio-frequency (RF) surface coils and mag-
netic	 field	 cameras	 (3.1.1,	 3.3.2).	 To	make	 the	 imaging	
methods more widely accessible, we have implemented 

quantitative multi-parameter mapping techniques on vari-
ous scanner platforms from two different vendors using 
generally available product pulse sequences (3.1.2). In a 
travelling heads study a high comparability across clinical 
sites and time points is demonstrated, which enables the 
use of multi-parameter mapping in the international clini-
cal NISCI trial on treatment of spinal cord injury (https://
nisci-2020.eu/). Developments and investigations into 
functional MRI methods at 7T allow for routinely captur-
ing the micro-organisation of columns and stripes in the 
visual	 cortex	 (3.1.4,	 3.1.5).	 Anatomical	 imaging	 benefit-
ted from navigator based corrections, optical prospec-
tive motion correction and deep learning-based denois-
ing approaches making it possible to routinely scan with 
500 µm	resolution	at	7T	(3.1.3).
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High-resolution diffusion weighted imaging with spiral readout and fi eld 
monitoring on a 300mT/m Connectom MRI scanner
 Paul, S. 1,  Herbst, M. 2,   Movahedian Attar, F. 1,    Edwards, L. J. 1,  Nagy, Z.  3,     Pine, K. J. 1, &    Weiskopf, N. 1, 4
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Gengenbach, Germany
3 Laboratory for Social and Neural Systems Research, University of Zurich, Switzerland
4 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Mapping	of	intracortical	diffusion	and	subcortical	U-fi	bres	
requires ultra-high-resolution diffusion-weighted imaging 
(DWI) combined with high b-values. To achieve the nec-
essary signal-to-noise and image quality, we developed 
DWI	with	spiral	readout,	fi	eld	monitoring	(Skope	Magnetic	
Resonance Technologies AG, Zurich, Switzerland), and 
generalised image reconstruction using a high gra-
dient 300 mT/m Connectom MRI scanner (Siemens 
Healthineers, Erlangen, Germany; Figure 3.1.1.1). An echo 
time	(TE)	of	32 ms	was	achieved	at	0.8 mm	isotropic	res-
olution for b-values up to 2000 s/mm2. The use of mag-
netic	fi	eld	probes	(Barmet	et.	al,	2008	Magn	Reson	Med,	
60,	187–197)	and	static	∆B0 maps combined with gener-
alised SENSE reconstruction (Skope-I) corrected dynamic 

fi	eld	distortion	up	to	third-order	spatial	spherical-harmon-
ics	and	static	fi	eld	distortion.
A	signifi	cant	reduction	in	blurring	and	increase	in	sharp-
ness of the white-matter and grey-matter boundary were 
observed in the images reconstructed with monitored 
third	 order	 trajectories	 compared	 to	 the	 fi	rst	 order	 cor-
rection (Figure 3.1.1.2). The ultra-high resolution DWI 
enabled investigation of intra-cortical diffusion and thin 
U-fi	bres	(Figure	3.1.1.3).	The	high	performance	of	the	DWI	
spiral acquisition approach offers great potential for fu-
ture high-resolution diffusion studies, even for challeng-
ing applications such as intracortical diffusion measure-
ments	and	U-fi	bre	mapping.

3.1.1

Figure 3.1.1.1  (A) Stejskal-Tanner diffusion 
imaging sequence with spiral readout. (B) 
Integration	of	fi	eld	monitoring	setup	 includ-
ing RF front-end and probes. 

Figure	3.1.1.2		Reconstructed	images	with	0.8	mm	isotropic	resolution	for	b = 0	s/mm2, sin-
gle	direction	diffusion	weighted	data	(b = 1000	s/mm2) and directionally-encoded fractional 
anisotropy	(FA)	and	coloured	FA	(cFA)	with	multi-shell	(b = 1000,	2000	s/mm2) DWI data for 
monitored	 fi	rst-	 and	 third-order	 readout	 trajectories	with	∆B0 off-resonance correction. For 
third-order	monitored	trajectories,	blurring	is	reduced	(arrows)	and	fi	ner	anatomical	details	are	
visible	(e.g.	in	the	frontal	lobes;	dashed	circles),	compared	to	only	fi	rst-order.	Diffusion	weight-
ed	data	were	acquired	with	60	diffusion	directions	per	shell	(with	20	interleaved	b = 0	s/mm2). 

A

C

B

b = 0 s/mm2 b = 1000 s/mm2 b = 1000, 2000 s/mm2

FA cFA

1st
 o

rd
er

 m
on

ito
re

d 
tr

aj
ec

to
ry

 
(w

ith
 Δ

B 0 c
or

re
ct

io
n)

3rd
 o

rd
er

 m
on

ito
re

d 
tr

aj
ec

to
ry

 
(w

ith
 Δ

B 0 c
or

re
ct

io
n)



105

MR Physics Developments

Development and validation of Multi-Parameter Mapping (MPM) for the 
NISCI multi-centre clinical trial
 Leutritz, T. 1,  Seif, M. 1,2,  Freund, P. 1, 2,  3, 4, &  Weiskopf, N. 1, 5
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Switzerland
3 Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
4 Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, University College London, UK
5 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Embedded as a sub-study within the clinical trial NISCI 
(Nogo inhibition in spinal cord injury: www.nisci-2020.eu), 
we employed whole brain quantitative imaging at 3Tesla 
as a new biomarker for de- and regeneration. The quanti-
tative MRI technique of multi-parameter mapping (MPM; 
Weiskopf et al., 2013, Frontiers in Neuroscience, 7, 1–11) 
was adapted to the possibilities at clinical sites with ven-
dor sequences as well as reduced resolution (1mm iso-
tropic	 resolution)	 and	 scanning	 time	 to	 fi	t	 in	 a	 session	

< 25	min.	To	evaluate	the	protocol	setup	for	consistency	
between and within sites (test-retest) we performed a 
travelling	 heads	 study	with	 fi	ve	 healthy	 subjects	 across	
six sites, involving different scanner hard- and software 
(Figure 3.1.2.1). For processing the data we used the 
hMRI-toolbox (www.hmri.info) for quantitative MRI data, 
which is developed by the MPI CBS and an international 
consortium (Tabelow et al., 2019, NeuroImage, 194, 191–
210). 
For quantitative maps (Magnetization Transfer saturation 
[MT], Proton Density [PD], longitudinal [R1] and effective 
transverse	relaxation	times	[R2*])	the	intra-site	coeffi	cient	
of	variation	(CoV)	was	between	4 %	and	8 %	for	maps	of	
MT, R1, and PD, whereas it was higher for R2* with up to 

3.1.2

Figure 3.1.1.3  Primary eigenvector of the diffusion tensor in (B) the genu of the corpus callosum and (C) occipital lobe, and (D) fODF recon-
structions in the occipital lobe superimposed on a coloured FA map (A). The high resolution allows investigation of intracortical structure and 
U-fi	bres.

Figure 3.1.2.1  Map of sites involved in the travelling heads study in-
cluding vendor, scanner hard- and software versions.

Figure 3.1.2.2  Inter- and intra-site CoV, and bias in all, as well as in a 
subset of sites, which was aggregated across all subjects and sites in 
the	subset.	Only	voxels	from	grey	and	white	matter	with	at	least	95 %	
tissue probability according to SPM segmentation are represented.

Heidelberg, DE
Siemens Verio

VB19

Basel, CH
Siemens Prisma

VE11C

Barcelona, ES
Siemens Verio

VD13A

Zurich, CH
Philips Achieva

V 5.1.7.2

Zurich, CH
Siemens Skyra fit

VE12B

Nottwil, CH
Philips Achieva dstream

V 5.3

Von TUBS - Eigenes Werk Diese W3C-unbestimmte Vektorgrafik wurde mit Adobe Illustrator erstellt. 
Diese Datei wurde mit Commonist hochgeladen. Diese Datei enthält Elemente, die von folgender 
Datei entnommen oder adaptiert wurden:  Germany in Europe.svg (von TUBS)., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=20042256

all sites
Siemens
Philips

in
tr

a-
si

te
 C

oV
 (%

)

in
te

r-s
ite

 C
oV

 (%
)

in
te

r-s
ite

 b
ia

s (
%

)

PD MT R1 R2* PD MT R1 R2* PD MT R1 R2*
0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Source	 map:	 Von	 TUBS	 -	 Eigenes	 Werk	 Diese	 W3C-unbestimmte	 Vektorgrafi	k	 wurde	 mit	 Adobe	
Illustrator erstellt. Diese Datei wurde mit Commonist hochgeladen. Diese Datei enthält Elemente, die von 
folgender Datei entnommen oder adaptiert wurden: Germany in Europe.svg (von TUBS)., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=20042256

A B C D



106

Non-invasive Imaging of the Anatomical and Functional Micro-Organisation of the Human Brain

15 %	 (Figure	 3.1.2.2).	The	 inter-site	 CoV	 varied	 between	
5 %	and	12 %	for	maps	of	MT,	R1,	and	PD,	whereas	it	was	
higher	for	R2*	with	up	to	18 %	(Figure	3.1.2.2).	The	inter-
site	bias	varied	between	2 %	and	5 %	for	MT,	R1,	and	PD,	
whereas	it	was	higher	for	R2*	(up	to	7 %,	Figure	3.1.2.2).	
However, longitudinal studies of spinal cord injury showed 
that	effect	sizes	are	in	the	range	of	17–20 %	for	R1,	and	

14 %	 for	MT	 (Grabher	et	al.,	2015,	Ann	Neurol,	78,	751–
761)  1	 year	 after	 injury	 compared	 to	 healthy	 controls.	
Thus, we expect to reliably detect injury related changes 
and	potentially	signifi	cant	treatment	effects	in	the	NISCI	
trial, using the optimised and validated MRI protocols and 
post-processing methods.

Reducing the level of artifacts in quantitative parametric maps at 3T 
and 7T
 Vaculciakova, L. 1,  Podranski, K. 1,  Fritsche, M. 1, 2,  Scherf, N. 1,  3,   Anwander, A. 1,    Pine, K. J. 1, &   Weiskopf, N. 1, 4
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Germany
3 Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Germany
4 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Multi-parametric quantitative MRI measures different MR 
parameters and offers the potential to characterise hu-
man	brain	microstructure.	An	effi	cient	implementation	of	
this concept, the multi-parameter mapping (MPM) pro-
tocol, uses 3 differently weighted multi-echo 3D-FLASH 
volumes to simultaneously quantify R1, R2*, proton den-
sity (PD) and magnetization transfer (MT) (Weiskopf et 
al., 2013, Front Neurosci, 7, 95). However, MRI artifacts 
are propagated into the quantitative maps and obfus-

cate meaningful physical values. To improve the reliabil-
ity of the generated MPMs, rigid head motion and B0-
fluctuation were measured during acquisition at 7T and 
corrected in a prospective or post-processing approach.
Optical prospective motion correction (Kineticor, HI) was 
used to track head movement. It has been previously 
shown to reduce the level of motion related artifacts in the 
parametric maps (Callaghan et al., 2015, Front Neurosci, 
9,	97).	By	monitoring	the	magnetic	fi	eld	fluctuations	with	
free induction decay (FID) navigators and performing 
phase correction during image reconstruction, dynamic 
fi	eld	 changes	 due	 to	 respiration	were	 addressed,	 effec-
tively decreasing the level of regional patchiness and blur-
ring (Figure 3.1.3.1).
To correct artifacts of unknown origin, we employed gen-
eral function approximators in the form of CARE-Net/U-
Net like feed forward neural networks (Weigert et al., 2018, 
Nat Methods, 15, 1090–1097 / Ronneberger et al., 2015, 
MICCAI	2015,	234–241).	One	specifi	c	example	is	ringing	
artifacts of unknown origin, appearing in maps acquired 
at 3T (Figure 3.1.3.2A). Training labels were generated 
by averaging multiple acquisitions showing the ripples in 
different locations, which yielded mostly artifact free im-
ages. The trained model was used to correct the weighted 
multi-echo images before MPM computation. Corrected 
images showed reduced artifact, while changes to un-
affected regions of the image were minimised (Figure 
3.1.3.2B). This approach preserves image features con-
siderably	better	than	other	options	to	address	the	specifi	c	
artifact, like Gaussian blurring or removing k-space lines.

3.1.3

Figure	3.1.3.1		Artifact	reduction	in	500 µm	resolution	R1	maps	due	
to navigator correction (bottom row) and optical prospective motion 
correction (PMC, right column). Dynamic B0-fluctuation correction 
using FID navigators results in increased R1 homogeneity in white 
matter by reducing patchy hyper-/hypo-intensities (red arrows). 
Blurring of the grey-white matter boundaries (yellow arrows) caused 
by motion is reduced in motion-corrected maps.

Figure 3.1.3.2  Artifact reduction using a 
neural network: Exemplary slice of cor-
rupted	T1	weighted	input	image	(fi	rst	echo)	
with ringing artifacts in the frontal areas 
(A), corrected output from neural network 
(B) and variance map showing model in-
trinsic uncertainty of the corrected image 
(C).0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.000

0.005

0.010

0.015

0.020

0.025
A B C



107

MR Physics Developments

Using these different methods we were able to substan-
tially reduce the severity of the most pronounced artifacts 
in the quantitative maps. We showed qualitative improve-
ment of parametric maps by reducing the blurring and 
ringing coming from rigid head motion. B0-fluctuation 
correction resulted in a decrease in variance of dorsal 

white	matter	voxels	of	~5 %	(in	R1,	R2*,	PD	map).	The	neu-
ral network was able to reduce the artifact in a test data-
set	 by	 12 dB	while	 preserving	 artifact	 free	 image	areas	
(multi scale structural similarity (MS-SSIM) in artifact free 
ROIs over all contrasts 0.89).

Reliable 3D mapping of ocular dominance columns in humans using 
GE-EPI at 7T
 Hänelt, D. 1,   Weiskopf, N. 1, 2,  Müller, R. 1,  Nasr, S.  3, 4,   Polimeni, J.  3, 4,  Tootell, R.  3, 4,  Sereno, M. 5, &  Trampel, R. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany
3 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
4 Department of Radiology, Harvard Medical School, Boston, USA
5 Department of Psychology, San Diego State University, San Diego, USA

Ocular dominance columns (ODCs) in primary visual cor-
tex (V1) are a prominent example of the modular organisa-
tion of cells in certain mammalian brains. With the devel-
opment	of	ultra-high	fi	eld	(UHF)	functional	MRI	(fMRI),	the	
mapping of neural dynamics at the spatial scale of corti-
cal layers (Polimeni et al., 2010, Neuroimage 52, 4, 1334– 
1346) and columns (Yacoub et al., 2007, Neuroimage 37, 
4, 1161–1177) became possible. Combined with sophis-
ticated analysis techniques for parcellating and contour-
ing the cortex we were able to robustly image the three-
dimensional structure of ocular dominance columns 
in human visual cortex. In order to do so, we acquired 
functional data at 7T with 1.0 mm and 0.8 mm isotropic 
resolution in a single subject in 4 separate scanning ses-
sions. ODCs were localised using a differential paradigm 
with visual stimulation of either the left or right eye by 
moving sparse random dot stereograms viewed through 
anaglyph goggles (Nasr et al., 2016, J Neurosci 36, 6, 
1841–1857). Activation maps (t-score, left eye > right 
eye) were sampled on the reconstructed surface mesh 
of the participant’s cortex at different cortical depths. V1 
was delineated using a separate retinotopy scan. The V1 
surface was cut out, flattened, and regridded onto a car-
tesian representation (Figure 3.1.4.1), which allows for an 
easy visualisation of the ODC’s across the cortex (Figure 
3.1.4.2).	Both	fi	gures	show	that	we	were	able	to	robustly	
map ODCs in each session. The apparent broadening of 
the columns towards the pial surface can be explained 
by the well-known sensitivity of GE-EPI acquisitions to 
large draining veins. This demonstration of functionally-
based	visualisation	of	fi	ne	structures	with	high	resolution	
can help to quantify the cortical depth dependent vascu-
lar blurring typically seen in fMRI. Recently, we collected 
data from a larger cohort using GE-EPI, SE-EPI, and SS-SI 
VASO (Huber et al., 2017, Neuron 96, 6, 1253–1263). This 
data set will allow us to compare these different high-res-
olution fMRI approaches regarding their sensitivity to the 
brain macrovasculature across cortical depth.

3.1.4

Figure 3.1.4.1  Unthresholded activation maps (t-score, left eye > right 
eye) from the flattened central cortical layer restricted to the stimu-
lated region of V1. The green line shows the position of the cross-
section shown in Figure 3.1.4.2. P: posterior, A: anterior, V: ventral, D: 
dorsal, white line: 5 mm.

Figure 3.1.4.2  Unthresholded activation maps from Figure 3.1.4.1 
shown in cross section through cortical depth at the position of the 
green	line.	The	blurring	towards	the	pial	surface	can	be	identifi	ed	in	
all	profi	les.	Colour-coding	as	in	Figure	3.1.4.1	WM:	white	matter,	white	
line: 5 mm.
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Mapping colour-selective stripes in human V2 using GE-EPI and SE-EPI 
at 7T
 Hänelt, D. 1,  Trampel, R. 1,  Nasr, S. 2,  3,  Polimeni, J. 2,  3,  Tootell, R. 2,  3,  Sereno, M. 4, &   Weiskopf, N. 1, 5
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
3 Department of Radiology, Harvard Medical School, Boston, USA
4 Department of Psychology, San Diego State University, USA
5 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

The extrastriate secondary visual area (V2) is known to 
have a unique modular organisation (thin, thick, and pale 
stripes; Figure 3.1.5.1), which functionally segregates fea-
tures of the visual input signal. For example, thin stripes 
are selectively activated by colour content, which was ex-
ploited	 to	map	 these	 structures	 for	 the	 fi	rst	 time	 in	 the	
living human brain using high-resolution fMRI at 7T (Nasr 
et al., 2016, J Neurosci 36, 6, 1841–1857). We replicated 
these results in one volunteer multiple times on different 
days using the same paradigm and GE-EPI protocol with 
nominal isotropic 1 mm resolution. Additionally, we ex-
tended this work by showing the same activation pattern 
using SE-EPI. Figure 3.1.5.2 shows thresholded t-maps 
(colour > no colour) for different sessions acquired on dif-
ferent days with GE-EPI and SE-EPI, respectively. As ex-
pected, the colour-selective thin stripes radiate outward 
from the V1/V2 border and run in parallel through V2. The 
exact location of the V1/V2 border (white line) was deter-
mined by a separate retinotopy scan. The expected stripe 
pattern can be robustly seen in all sessions. It is already 
known that the stripe architecture can be seen histologi-
cally not only using cytochrome oxidase staining meth-
ods (Figure 3.1.5.1) but also with myelin stains (Horton et 

al., 1997, Cereb Cortex 7, 2, 166–177). As MRI is inherent-
ly sensitive to myelin, studying the structure-function rela-
tionships	of	fi	ne	structures	in	human	visual	cortex	is	pos-
sible	in	vivo	using	ultra-high	fi	eld	strength	of	7T.	Therefore,	
we are running a study to investigate this relationship us-
ing fMRI and qMRI (MPM protocol, Weiskopf et al., 2013, 
Front Neurosci 7, 95) to acquire further knowledge about 
the microstructure-function interdependencies in the liv-
ing human brain.

3.1.5

Figure 3.1.5.1  Flat-mounted section 
from the lateral surface of squirrel mon-
key cortex stained with cytochrome oxi-
dase. Anterior in the brain is toward the 
left and dorsal is toward the top. The 
semicircular region of the right is central 
V1. To the left, the stripe topography in 
V2	can	be	 identifi	ed	as	a	band	of	paral-
lel stripes. Figure and caption taken from 
Tootell et al. (1983, Science, 220, 4598, 
737–739). black line: 5 mm.

Figure 3.1.5.2  Thresholded activation maps (colour > no colour) show the colour-selective stripes in V2 on the left hemispheres of one partici-
pant. As expected the stripes are radiating outwards from the V1/V2 border and run in parallel through V2. (A)-(B) show estimates in single GE-
EPI sessions, which demonstrates scan-rescan reliability. (C)-(D) show the average over two GE- and SE-EPI sessions, respectively.
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The	 development	 of	 unified	 biophysical	 models	 is	 cen-
tral for the success of non-invasive imaging of the brain’s  
micro-organisation. They effectively integrate and lev-
erage the wide range of contrasts (e.g., diffusion, relax-
ometry, magnetisation transfer contrasts) for inferring 
the underlying microstructure from MRI, even when the 
microstructural features are smaller than the nominal 
voxel size (Figure 3.2). Generative models of MR contrast 
predict the contrast in MR images from the underlying 
known microstructure. Gleaning microstructure infor-
mation from MRI requires the inversion of these models, 
which is frequently ill-posed. To constrain the problem 
and improve its conditioning, the models include a priori 
known aspects of structural and functional micro-organ-
isation,	e.g.,	layers,	tangential	and	radial	fibres	in	the	cor-
tex (Figure 3.2). Moreover, the use of multiple contrasts 
improves the micro-organisation estimates from MRI, 
since they provide different perspectives of the underlying 
microstructure and improve the conditioning of the noto-
riously	 difficult	model	 inference.	 An	 example	 for	 a	 gen-
erative	model	based	on	first	principles	is	the	description	

of neuromelanin-iron induced contrast in the substantia 
nigra (3.2.1). Another example, which is based on a da-
ta-driven model, is the description of myelination-related 
contrast in the cortex by a spectrum of histological stains 
and MALDI (3.2.2). The integration of multiple contrasts 
is	exemplified	by	the	work	on	IR-DWI	(3.2.3),	which	 inte-
grates measurements of longitudinal relaxation with dif-
fusion. Potential issues of using post-mortem tissue for 
informing biophysical modelling are highlighted by funda-
mental changes in the contrast drivers in the locus coer-
uleus	due	to	formalin	fixation	(3.2.4).
The	different	unified	biophysical	models	require	accurate	
mesoscopic and macroscopic anatomical information 
combined with the multi-contrast MRI data. Thus, the bio-
physical modelling is combined with developments in the 
field	of	image	and	data	processing,	which	allow	for	high	
quality registration and segmentation of ultra-high reso-
lution datasets. An example is the development of the 
hMRI-toolbox (www.hMRI.info), which is an open-source 
toolbox for quantitative MRI and hMRI analysis and devel-
oped by an international network of developers.
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and T2) and susceptibility effects as visible in the phase MR signal. (B) Quantitative MRI (qMRI) uses physical models to calculate quantitative 
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microstructural description of the brain, here, for example, the myeloarchitectural description of the cortical sheet (reprinted from (Weiskopf et 
al., 2015, Curr. Opin. Neurol., 28, 313–322).
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A biophysical model of iron-induced transverse MRI relaxation in 
nigrosome 1: Toward an early biomarker of Parkinson’s Disease
Brammerloh, M. 1, 2, Kirilina, E. 1,  3, Weigelt, I. 4, Lange, C. 1, 2, Reinert, T. 1, 2, Jahnkuhn, S. 2, Jäger, C. 1, Pine, K. 1, Gavriilidis, F. 1, 
Trampel, R. 1, Reimer, E. 1, Morawski, M. 4, Arendt, T. 4, & Weiskopf, N. 1, 2
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany
3 Center for Cognitive Neuroscience Berlin, Free University Berlin, Germany
4 Paul Flechsig Institute of Brain Research, Leipzig University, Germany

In Parkinson’s disease, the depletion of iron-rich dopa-
minergic neurons in nigrosome 1 in substantia nigra pre-
cedes	the	first	motor	symptoms	by	almost	two	decades.	
Methods capable of monitoring this neuronal depletion 
at an early disease stage are highly desired for diagnosis 
and treatment monitoring.
MRI is particularly suited for this task, since it is sensitive 
to iron accumulated in the neuromelanin of dopaminer-
gic neurons (Figure 3.2.1.1). However, the mechanisms of 
MRI contrast in substantia nigra are unknown, hindering 
the	development	of	specific	biomarkers.	We	elucidate	the	
mechanisms of iron-induced transverse relaxation in ni-
grosome 1 by combining quantitative 3D iron histology, 
quantitative MRI on post-mortem human brain tissue, and 
biophysical modelling.

We developed a comprehensive biophysical model ac-
counting for the chemical form of iron binding and the 
heterogeneous iron distribution at the cellular scale. This 
model was informed with 3D quantitative iron concen-
tration maps of nigrosome 1 obtained from combining 
Proton-Induced X-ray Emission microscopy (PIXE) with 
classical iron stains. We showed that iron in dopamin-
ergic neurons is the dominant source of effective trans-
verse relaxation rate R2*. We determined the proper 
theoretical relaxation regime describing R2*, which was 
found to be close to static dephasing (Figure 3.2.1.2). In 
this regime, R2* is analytically linked to the total iron con-
tent in dopaminergic neurons, i. e., the product of neuronal 
density and mean cellular iron concentration (Yablonskiy 
& Haacke, 1994, Magn Reson Med, 32, 6, 749–763). Our 

3.2.1

Figure 3.2.1.1  Quantitative histology and 
MRI on a representative substantia nigra 
specimen. (A) On a quantitative R2* map of 
substantia nigra, nigrosomes 1 and 3 (N1 
and N3) are visible as hyperintense areas. 
(B) On 50 µm resolution T2*-weighted im-
ages of substantia nigra, granular hypoin-
tensities resembling dopaminergic neurons 
are visible in nigrosome 1 and 3. (C) An un-
stained tissue section including substantia 
nigra shows nigrosome 1 and 3 as dopa-
minergic neuron-rich areas (dopaminergic 
neurons enlarged for better visibility). (D) 
Subdivision of Substantia Nigra (SN; Damier 
et al., 1999, Brain, 122, 8, 1437–1448) shows 
elongated nigrosome 1 and circular nigro-
some 3. (E) On a quantitative iron map of 
nigrosome 1 obtained with PIXE, neuromela-
nin domains within dopaminergic neurons 
show increased iron concentration. (F) On 
light microscopy images of the same area 
as in (E), the brown neuromelanin-pigment-
ed part of dopaminergic neurons is visible.

Figure 3.2.1.2  Biophysical modelling of gradient echo signal in ni-
grosome 1. (A) Dopaminergic neurons were strong Larmor frequency 
perturbers on frequency maps predicted from quantitative iron histol-
ogy. (B) Gradient echo signal predicted in Static Dephasing regime 
(SD; Yablonskiy & Haacke, 1994, Magn Reson Med, 32, 6, 749–763) 
agree much better with the experimental signal decay and Monte 
Carlo simulations (MC; Gagnon et al., 2015, J. Neurosci., 35, 8, 3663–
3675) than predictions from Effective Medium Theory (EMT; Kiselev 
and Novikov, 2002, PRL, 89, 27, 278101). The static dephasing regime 
allows for the linking of the iron-induced R2* to the total iron content 
in dopaminergic neurons.
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model’s predictions were shown to be accurate by com-
paring them to relaxation rates acquired at 7 T on a speci-
men before and after chemical iron extraction.
For	 the	 first	 time,	we	 achieved	 a	mechanistic	model	 of	
iron-induced MR contrast in substantia nigra derived from 

first	principles	and	based	on	iron	microstructure	quantifi-
cation. This knowledge paves the road toward novel, spe-
cific	biomarkers	for	Parkinson’s	disease.

Different characteristics of cortical and white matter myelin: A challenge 
for MRI myelin biomarkers
Kirilina, E. 1, 2, Lipp, I. 1, Jäger, C. 1, Morawski, M.  3, Terzi, M. N. 4, 5, Bidmon, H.-J. 6, Axer, M. 4, Huesgen, P. F. 5, & Weiskopf, N. 1, 7
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Center for Cognitive Neuroscience Berlin, Free University Berlin, Germany 
3 Paul Flechsig Institute of Brain Research, Leipzig University, Germany
4 Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Germany
5 Central Institute of Engineering, Electronics and Analytics, Forschungszentrum Jülich, Germany
6 C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Germany
7 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Myelin, the fatty axon-insulating substance in the brain, 
is composed of a large variety of lipids, proteins, and 
trapped water. It is the main source of contrast in magnet-
ic resonance images (MRI) of the human brain. All MRI pa-
rameters, including longitudinal and transverse relaxation 
rates (R1, R2, R2*), proton density (PD), magnetization 
transfer and magnetic susceptibility are sensitive to tis-
sue myelination due to different biophysical mechanisms 
(Edwards et al., Neuroimage 2018). Therefore, quantita-
tive MR parameters used as myelination biomarkers may 
provide unique in vivo information on brain development, 
cortical myeloarchitecture, plasticity, and neurodegenera-
tion (Edwards et al., Neuroimage 2018, Natu et al., PNAS, 
2019). However, the mechanisms underlying the sensitiv-
ity of MRI parameters to tissue myelination are only partly 
understood and quantitative comparisons between MRI 
metrics and tissue myelination are limited to a few stud-
ies.	Moreover,	 specificity	 and	 sensitivity	 of	R1,	R2*,	 and	
PD to myelin composition are only starting to be explored 
in more detail (Filo et al., 2019, Nature Commun, 2019, 
10, 3403). Validation of MRI-based myelin biomarkers is 
difficult	due	to	the	lack	of	methods	for	histological	myelin	
quantification.	 Classical	 histological	 and	 immunohisto-
chemistry stains provide only qualitative information on 
myelin distribution and reflect only some of the various 
myelin components. Recently developed advanced meth-
ods	for	lipid	quantification	promise	to	overcome	this	limi-
tation.
Here, we systematically explored several methods for 
myelin	 quantification	 for	 the	 validation	 of	 MRI	 myelin	
biomarkers. To this end, we combined quantitative MRI 
in post mortem human brain tissue samples with histo-
logical and immunohistochemical myelin stains and lipid 
imaging with matrix-assisted laser desorption/ionisation 
mass spectrometry (MALDI-MSI).
We demonstrated that different histological stains for 
myelin detection provide similar, but distinct information 
on tissue myelination, particularly in the cortex (Figure 
3.2.2.1). Therefore, the assessment of cortical myelin 

mapping requires the use of multiple stains and is, even in 
this case, not comprehensive. We showed that lipid com-
position of tissue varies across different cortical layers 
and white matter pathways, potentially reflecting differ-
ences in myelin structure (Figure 3.2.2.2). We suggested 
that a principal component analysis of MALDI-MSI lipid 
maps can be used to obtain a histological myelin bio-
marker for the validation of quantitative MRI parameters 
(Figure 3.2.2.3). Our results demonstrated that MALDI-
MSI is a powerful tool for validation and development of 
myelin MR markers and that differences in lipid composi-
tion of the cortex and in white matter pathways need to be 
taken into account when interpreting MRI-based maps of 
brain myelination.

3.2.2

Figure 3.2.2.1  Selectivity of histological myelin markers and myelin-
sensitive quantitative MRI parameters obtained on post-mortem hu-
man brain tissue blocks, containing the primary visual cortex. Optical 
images (A) and optical density maps (B) of histological stains are pre-
sented	for	Luxol	Fast	Blue	stain	(top),	Silver	impregnation	fibre	stain	
(middle) and immunohistochemistry with a myelin-basic-protein 
(MBP) antibody (bottom). Quantitative maps of MR parameters, in-
cluding longitudinal relaxation rate R1 (top), proton density (PD) map 
(middle), and effective transverse relaxation rate R2* (bottom), were 
obtained on the same tissue block. High contrast between white and 
grey matter was observed for all detection methods and MRI param-
eters. However, different patterns of myelination were observed in the 
cortex with different histological stains and MRI parameters.

A B CStained slice Optical density Quantitative MRI
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Exploring diffusion properties in grey matter using inversion recovery 
diffusion weighted imaging
  Movahedian Attar, F. 1,  Dhital, B. 1, 4,  Kirilina, E. 1, 2,  Kiselev, V.  3,   Edwards, L. J. 1, &   Weiskopf, N. 1, 4
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Center for Cognitive Neuroscience Berlin, Free University Berlin, Germany
 3 Medical Center, Faculty of Medicine, University of Freiburg, Germany
4 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

We aimed to identify different microstructural compo-
nents of the grey matter by their different relativity (T1) 
and diffusivity properties. Inversion recovery diffusion 
weighted imaging (De Santis et al., 2016, Magn Reson 
Med, 75, 1, 372–380) was used to investigate this com-
partmentalisation.

The diffusion tensor derived fractional anisotropy (FA) 
and mean diffusivity (MD) were obtained using b=0, 500, 
1300 s/mm2 at multiple inversion times (TI). While the TI 
independent MD and FA do not provide any evidence of 
multiple compartments in white matter, their observed TI 
dependence reveals multicompartment structure in grey 
matter (Figure 3.2.3.1).

3.2.3

Figure 3.2.2.2  Myelin characterisation of human brain tissue lipid composition using MALDI-MSI. (A) Histological silver stains of post mortem 
tissue sections used for MALDI-MSI analysis. In consecutive sections of these, several regions-of-interests (ROIs) located in primary visual and 
higher visual cortices were imaged with MALDI-MSI. (B) Examples of MALDI-MSI maps of several lipids that show distinct spatial distributions. 
While a lipid with the mass to charge ratio 742.53 was mostly present in the cortex in layer IV, other types of  lipids were mostly localised in white 
matter. Note that the optic radiation had a higher lipid concentration in line with higher myelination of this dense white matter tract. (C) Example 
of a MALDI mass spectrum averaged across the entire ROI.
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Figure 3.2.2.3  Comparison between myelin-sensitive quantitative MRI parameters and MALDI-MSI-based lipid concentration maps. Two rows 
correspond to two ROIs covering primary visual cortex (V1, top) and fusiform gyrus (FG, bottom). Quantitative maps of R1, R2* and macro-
molecular	volume	fractions	(MVF = 1-PD;	from	left	to	right)	are	shown	together	with	maps	of	two	principal	component	analysis	(PCA)	scores	
obtained	on	the	same	ROI.	The	fi	rst	PCA	component	is	most	pronounced	in	the	white	matter,	reflecting	the	myelin	content	distribution	in	the	
ROI, while the second PCA component contains mostly cortical lipids. This demonstrates that the lipid composition of cortex and white matter 
clearly differs.
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We	hypothesised	that	this	fi	nding	could	be	explained	by	
compartmentalisation at three different spatial scales. 
Cortex is organised into intra- and extra-axonal compart-
ments on a microscopic scale; on a mesoscopic scale 
the effects could be described in terms of myelin-proxi-
mal	and	myelin-distal	water	(cells	and	fi	bres)	due	to	mye-
lin’s	effi	cient	relaxation	and	water	hinderance	properties;	

and on a macroscopic scale it is organised into cortical 
laminae and areas (Figure 3.2.3.2). To disentangle these 
contributions we are going to measure the microscopic 
FA (µFA, Szczepankiewicz et al., 2015, Neuroimage, 104, 
241–252) and investigate the dependence on the spatial 
resolution and the abundance of myelin on the macros-
copic scale . 

Figure	3.2.3.1		Multi-TI	diffusion	weighted	imaging	experiment	conducted	with	b = 0,	500	and	1300	s/mm2 showed TI-dependent grey matter 
and TI-independent white matter diffusion properties. (top) Signal for b=0 s/mm2 variation at various TI. White and grey matter signals were 
suppressed at TI~500 ms and TI~900 ms, respectively. (bottom) Real and simulated (S=S0(1-2e-TI/T1))	b = 0	s/mm2 signal, FA and MD variation 
with TI. Grey matter MD and FA differ at short and long TI whereas white matter MD and FA are constant with TI. The diffusion tensor was esti-
mated	using	b = 500	and	1300	s/mm2. Plots are shown for a candidate axial slice in the brain. The highlighted regions in red indicate TI for which 
diffusion tensor estimates were unreliable due to low signal. 

Figure 3.2.3.2  The observed TI-dependent grey matter property may be explained by compartmentalisation at different spatial scales. The 
microscopic scale (adapted from Liewald et al., 2014, Biol. Cybern., 108, 541–557) where intra- and extra-axonal compartments dominate, the 
mesoscopic	scale	(adapted	from	Morawski	et	al.,	2018,	Neuroimage,	182,	417–428)	where	the	water	proximal	(fi	bres)	and	distal	(cells)	to	the	
fi	bres	dominates	and/or	macroscopic	scale	(adapted	from	Vogt	&	Vogt,	1919,	J	Psychol	Neurol,	25,	275–462)	where	the	cortical	layers	domina-
te. To  investigate each possibility, experiments at various spatial resolutions and dedicated acquisition and modelling are planned.
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Iron-induced MR contrast in human Locus Coeruleus: A cautionary tale of 
misleading Post Mortem MRI results
 Kirilina, E. 1, 2,  Lange, C.  3,  Jäger, C. 1,  Reinert, T. 1,  3,  Lohmiller, T. 4,  Mohammadi, S. 5,  Streubel, T. 5,  Brammerloh, M. 1,  3, 
 Alkemade, A. 6,  Forstmann, B. 6,  Herrler, A. 7,  Schnegg, A. 8,  Morawski, M. 9, &   Weiskopf, N. 1,  3
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Center for Cognitive Neuroscience Berlin, Free University Berlin, Germany
3 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany
4 Helmholtz Center for Material and Energy Research, Berlin, Germany
5 Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Germany
6 Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, NL
7 Department of Anatomy and Embryology, Maastricht University, NL
8 EPR Research Group, Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr, Germany
9 Paul Flechsig Institute of Brain Research, Leipzig University, Germany

The locus coeruleus (LC), a small nucleus in the pons, is 
affected in early stages of several tauopathies and synu-
cleinopathies, including Alzheimer’s disease (AD). MRI 
provides highly promising in-vivo biomarkers of LC in-
tegrity, for early AD diagnosis and monitoring of poten-
tial treatments (Hammerer et al., PNAS, 2018). LC visu-
alisation	 and	 quantifi	cation	 utilise	 MR	 contrasts	 driven	
by the pigment and metal chelate neuromelanin that is 
stored in noradrenergic neurons in LC. The mechanisms 
of neuromelanin-induced MRI contrasts are puzzling and 
no mechanistic link between MRI parameters and tissue 
microstructure in LC has been established yet.
We combine high-resolution post-mortem MRI, histology/
immunocytochemistry, ion-beam microscopy, and elec-
tron paramagnetic resonance (EPR) for a comprehensive 
description of the contrast mechanisms in LC. As part of 

these studies, we demonstrate that the main source of 
MR	contrast	in	formalin	fi	xed	LC	is	paramagnetic	iron	ac-
cumulated in NM-containing neurons. However, we show 
that	MR	contrast	in	LC	drastically	changes	during	the	fi	rst	
six	months	of	tissue	fi	xation.	We	assign	these	changes	to	
iron being scavenged by NM and the change of its para-
magnetic state. These results have major consequences 
for MRI of the locus coeruleus, demonstrating a funda-
mental change rather than the commonly known gradual 
changes	in	contrast	due	to	formalin	fi	xation.
Since the in-vivo and post-mortem MRI cannot readily be 
compared, histological validation studies and develop-
ing AD biomarkers based on the LC are complicated and 
some previously published results should be re-interpret-
ed.

3.2.4

Figure 3.2.4.1  Quantitative R2* 
maps in vivo and in post mortem 
brain specimen with different 
fi	xation	 times.	 The	 position	 of	
the bilateral LC in the axial slice 
is indicated by arrows. The LC 
does not show any R2* contrast 
to surrounding tissue in vivo and 
for	the	specimen	with	short	fi	xa-
tion time, but is clearly visible in 
all samples after 5 months of 
fi	xation.	

Figure 3.2.4.2  NM-containing neurons are the main source of R2* 
hyperintensity	in	post	mortem	LC	tissue	after	long	fi	xation	time.	(A)	
Axial slice of an ultra-high resolution T2*-weighted image acquired on 
a	tissue	block	containing	LC	(50	µm	isotropic	resolution,	TE = 19 ms,	
169	days	of	fi	xation).	 (B)	Luxol	Fast	Blue	stain	 (blue-green)	 for	my-
elinated	fi	bres	shows	the	location	of	dense	fi	bre	tracts	surrounding	
LC. Pigmented (brown-black) NM-containing neurons are visible. 
Quantitative maps of iron concentration obtained with ion beam mi-
croscopy in LC are shown in the inset. High iron concentrations were 
observed in NM-containing neurons. Averaged iron concentration in 
LC was found to be 10.7±2 µg/g wet tissue weight. (C) Quantitative 
R2* and R2 maps of tissue block before (left part) and after (right 
part) chemical iron extraction from tissue. (D) R2* and R2 values aver-
aged over LC before and after iron extraction.
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The non-invasive imaging of brain micro-organisation 
offers	 possibilities	 for	 a	 broad	 range	 of	 neuroscientific	
studies. At the same time the newly developed imaging 
methods and biophysical models require careful valida-
tion. This section provides examples of different in-vivo 
and post-mortem studies pursuing these goals.
A novel combination of ultra-high resolution quantitative 
multi-parameter mapping at 7T with gene expression and 
cytoarchitectonic atlases is used for validating cortical 
layer information in MRI (3.3.1). This combination prom-
ises	new	ways	to	study	the	specific	connectivity	between	
the cortex and subcortical areas and its changes in dis-
ease.	The	study	on	U-fibres	in	the	visual	cortex	and	their	
relation to the functional retinotopic organisation is an 
example of a multi-modal in-vivo validation of the micro-
structure imaging approaches (3.3.2).

Advanced histology techniques are developed as part of 
the post-mortem validation. For example, semi-thin and 
electron microscopy acquisition and analysis methods 
are developed and applied to characterising the micro-
structure of the white matter (3.3.3), which will help us 
validate models of diffusion contrast in white matter and 
of	crossing	fibres.	The	novel	opportunities	of	whole	brain	
microstructure imaging were also exploited for compre-
hensive post-mortem imaging of entire human brains and 
hominoid brains (3.3.4) as part of the Evolution of Brain 
Connectivity project in collaboration with the Department 
of Neuropsychology, MPI for Evolutionary Anthropology 
(Leipzig), Paul Flechsig Institute of Brain Research (Leipzig 
University), and Robert Koch Institute (Berlin).
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Validation of quantitative 7T MRI across cortical depths using 
cytoarchitectonics, gene expression, and connectomics
 McColgan, P. 1, 2,  Helbling, S. 1,  Vaculciakova, L. 1,  Pine, K. J. 1,  Wagstyl, K.  3,  Edwards L. J. 1,  Movahedian Attar, F. 1, 
 Papoutsi, M. 2,  Wei, Y. 4,  van den Heuvel, M. P. 4,  Tabrizi, S. J. 2,  Rees, G.  3, &   Weiskopf, N. 1, 5
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Huntington’s Disease Research Centre, Institute of Neurology, University College London, UK
3 The Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, UK
4 Complex Traits Genetics Lab, Vrije Universiteit Amsterdam, NL
5 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Quantitative MRI (qMRI) is sensitive to micro-structur-
al properties of brain tissue such as myelination and 
iron concentration (Stüber et al. 2014, Neuroimage, 93, 
95–106; Callaghan et al. 2015, Magn Reson Med, 73, 
1309–1314) and has been demonstrated to be predic-
tive of functional brain measures (Helbling et al., 2015, 

Neuroimage,	108,	377–385).	Ultra-high	fi	eld	MRI	has	the	
potential to push qMRI-based in vivo histology of the hu-
man cortex to reach even laminar resolution (Trampel et 
al., 2019, Neuroimage). Here we have validated cortical 
layer-specifi	city	 for	 quantitative	 maps	 from	 a	 7T	multi-
parametric	mapping	(MPM)	500μm	whole	brain	protocol	

3.3.1

Figure	3.3.1.2		Relationship	between	7T	MRI	quantitative	maps	and	layer-specifi	c	cytoarchitectonics,	gene	expression,	and	connectomics.	(A)
R2* across cortical depths against von Economo (VE) cortical layer cell count and against Big Brain cortical layer brain cell staining intensity. 
(B)	Signifi	cant	correlations	of	average	quantitative	R2*	with	cortical	layer	specifi	c	genes	across	regions	of	interest	from	the	HCP-MMP	atlas	in	
the left hemisphere. (C) R1 across cortical depths against R1-weighted connections and R2* across cortical depths against R2*-weighted white 
matter connections for cortical-striatal (C-S), cortical-thalamical (C-T), and cortical-cortical (C-C) connections. Cortical-cortical connections 
were	further	subdivided	into	interhemispheric	(Inter-H)	and	intrahemispheric	(Intra-H)	connections.	Boxes	with	black	outlines	indicate	signifi	-
cant	correlations	(Bonferroni-corrected	signifi	cance	with	p <	0.05).	

Figure 3.3.1.1  Validation and exploration of 
layer	specifi	city	of	MRI.	Exploring	R1	and	R2*	
quantitative 7T MRI across cortical depths us-
ing cytoarchitectonics, connectomics based 
on DWI with ultra-strong gradients and re-
gional gene expression from the Allen Human 
Brain atlas.

R2* and Big Brain 
staining intensities

Big Brain cortical layer

D1
D2
D3
D4
D5
D6
D7
D8

R2
* 

co
rti

ca
l d

ep
th

 
(W

M
/G

M
 <

- P
ia

l)

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

R2* and VE cell counts

I II III IV V VI I II III IV V VI
VE layer

D1
D2
D3
D4
D5
D6
D7
D8

R2
* 

co
rti

ca
l d

ep
th

 
(W

M
/G

M
 <

- P
ia

l)

22

24

26

28

30

32

34

22

24

26

28

30

32

34

22

24

26

28

30

32

34

22

24

26

28

30

32

34R1-weighted connectivity

C-S C-T C-C Inter-H Intra-H C-S C-T C-C Inter-H Intra-H
White matter connection types

D1
D2
D3
D4
D5
D6
D7
D8

R1
 c

or
tic

al
 d

ep
th

 
(W

M
/G

M
 <

- P
ia

l)

R2*-weighted connectivity

White matter connection types

D1
D2
D3
D4
D5
D6
D7
D8

R2
* 

co
rti

ca
l d

ep
th

 
(W

M
/G

M
 <

- P
ia

l)

–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
0.8

A B

C

Layer 2 Layer 3

Layer 4 Layer 5

R2
* 

in
 s

–1
R2

* 
in

 s
–1

R2
* 

in
 s

–1
R2

* 
in

 s
–1

Gene expression PCA weight Gene expression PCA weight

Gene expression PCA weight Gene expression PCA weight
–20 200

–10 10 200

–5 5 100

–5 5 100

7T MPMs: R1 and R2*

Big Brain

Von Economo

Cells

Transcriptome Atlas

Genes

3T Connectome

Connectomics

3T Connectome



121

Neuroscientifi	c	Applications	and	Validation

(Figure	3.3.1.1).	The	sensitivity	of	layer-specifi	c	measures	
of effective transverse relaxation rate (R2*)  and longitu-
dinal relaxation rate (R1) was characterised by relating 
R2* and R1 to cortical cytoarchitecture provided by the 
von Economo and Big Brain post-mortem histology at-
lases (Scholtens et al., 2018, Neuroimage 170, 249–256; 
Amunts et al., 2013, Science 340, 1472–1475). We also 
investigated the relationship between 7T MPMs and lay-
er-specifi	c	gene	expression	using	the	Allen	Human	Brain	
atlas (Hawrylycz et al., 2012, Nature 489, 391–399), and 
linked MPM cortical depth measures with anatomical 
white	 matter	 connections	 using	 high	 fi	delity	 diffusion	
tractography	from	a	300 mT/m	Connectom	MRI	system	
(Siemens Healthineers, Erlangen, Germany). We showed 
that the R2* across cortical depths is highly correlated 
with	 layer-specifi	c	 cell	 numbers	 and	 cell	 staining	 inten-
sities.	While	 these	 correlations	were	 signifi	cant	 for	 R2*	

measures across multiple cortical depths, we note that 
this	 low	 laminar	specifi	city	may	at	 least	partly	be	attrib-
uted to the presence of high cross correlations between 
layers for both von Economo and Big Brain data (i.e., most 
likely high covariance of biological origin). Gene enrich-
ment analysis (Arnatkeviciute et al., 2019, Neuroimage 
189,	 353–367)	 demonstrated	 signifi	cant	 correlations	
between	 R2*	 across	 cortical	 depths	 and	 layer-specifi	c	
genes. Furthermore, diffusion tractography based white 
matter connectivity measures were highly correlated with 
grey matter R1 and R2* across cortical depths. These 
fi	ndings	 demonstrate	 the	 potential	 of	 combining	 7T	
MPMs, gene expression, and white matter connections 
to provide an anatomically precise framework for eluci-
dating	layer-specifi	c	neural	communication	pathways	in	a	
whole-brain fashion.

U-fi bre connectivity mapping using sub-millimetre resolution diffusion MRI 
tractography 
 Movahedian Attar, F.  1,  Kirilina, E.  1, 2,  Hänelt, D.  1,  Pine, K. J. 1,  Trampel, R. 1,   Edwards, L. J. 1, &  Weiskopf, N 1,  3

1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Center for Cognitive Neuroscience Berlin, Free University Berlin, Germany
3 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Short	 cortico-cortical	 association	 fi	bres	 (U-fi	bres)	 are	
white	 matter	 fi	bres	 that	 run	 directly	 below	 the	 cortical	
grey	matter	 in	 the	 superfi	cial	white	matter	 and	connect	

nearby cortical areas (Meynert 1885, Schüz & Braitenberg, 
2002).	U-fi	bres	have	demonstrated	 involvement	 in	 brain	
development, function, and pathology but are underrep-

3.3.2

Figure 3.3.2.1  Combination of sub-milli-
metre resolution diffusion weighted imag-
ing and functional retinotopy help validate 
U-fi	bre	mapping	 in	 the	human	brain	 in-vivo.	
(A–C)	High	quality	fi	bre	orientation	distribu-
tion function estimates at 0.8 mm isotropic 
resolution	 using	 a	 multi-fi	bre	 estimation	
model	capable	of	disentangling	crossing	fi	-
bres and partial volume effects (Tournier et 
al., 2004, Neuroimage, 23, 3, 1176–1185; 
Dhollander et al., 2016, ISMRM, Lisbon, 
Portugal). High quality virtual dissection of 
(D) optic radiation tract was obtained and 
agreed with early histology (E, adapted from 
Sachs, 1892, Georg Thieme Verlag, Leipzig) 
for	 (F)	short	fi	bres.	 (G)	Segmentation	of	V1	
and V2 was performed using 7T functional 
retinotopy  (Sereno et al. 1995, Science, 268, 
889–893) and (H) each area was further 
subdivided into three sub-areas as shown 
on the inflated brain surface. (I) The subdivi-
sions of V1 and V2 were transformed to the 
volumetric diffusion weighted image space 
and used to obtain connectivity between the 
different V1 and V2 sub-areas. In this con-
text, retinotopic and non-retinotopic connec-
tivity	were	defi	ned	as	connections	between	
corresponding V1 and V2 sub-areas (1-1, 2-2, 
etc.) and non-corresponding V1 and V2 sub-
areas (1-2, 3-6, etc.), respectively. A,P,R,L,I,S: 
anterior, posterior, right, left, inferior, superior. 
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resented in the current human brain connectome. A more 
complete picture of the human brain connectome can be 
obtained	by	reliably	mapping	the	U-fibres,	but	this	requires	
high quality sub-millimetre resolution in-vivo diffusion 
MRI (Song et al., 2014, Brain Connectivity, 4, 636–640), 
dedicated	fibre	and	tractography	models	and	appropriate	
validation.
We	addressed	U-fibre	connectivity	mapping	by	acquiring	
sub-millimetre resolution in-vivo diffusion MRI facilitated 
by the high performance gradients (300 mT/m maxi-
mum gradient amplitude) of the 3T Connectom scanner 
(Setsompop et al., 2013, Neuroimage, 80, 220–233) and 
targeted	validation	by	mapping	U-fibre	connectivity	in	the	

human brain between the primary and secondary visual 
cortical areas (V1 and V2, respectively) which are retino-
topically organised (Figure 3.3.2.1).
The	 detected	 U-fibre	 connectivity	 maps	 were	 found	 to	
be retinotopically organised, i.e., connections between 
corresponding retinotopic areas of V1 and V2 were rela-
tively	higher.	Not	all	detected	short	fibre	connections	were	
strictly U-shaped (Figure 3.3.2.2). This proof of concept 
study	showcases	robust	U-fibre	connectivity	mapping	in-
vivo. We believe that the current research effort — com-
bining	multiple	MRI	modalities	 for	 U-fibre	mapping	 and	
validation — is an important step towards the construc-
tion of a more complete human brain connectome.

Measuring axon diameter, axon density, g-ratio, myelin thickness, and 
myelin density in human white matter tracts using light and electron 
microscopy
Morozova, M. 1,  2, Mordhorst, L.  3, Rusch, H.  2, Tabarin, T.  3, Jäger, C. 1, Anwander, A. 1, Mohammadi, S. 1,  3, Morawski, M. 1,  2, & 
Geyer, S. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Paul Flechsig Institute of Brain Research, Leipzig University, Germany
3 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany

Recent advances in magnetic resonance imaging (MRI)-
based biophysical models facilitate the estimation of dif-
ferent white matter (WM) properties in-vivo. The goal of 
the interdisciplinary DFG-funded SPP 2041 project is to 
develop a computational framework that uses this kind of 
microstructural information to resolve kissing and cross-
ing	fibres	 in	diffusion	MRI	based	tractography	and	mini-
mises	false	positive	connections.	However,	it	is	first	nec-
essary	 to	validate	 the	quantification	of	MRI-derived	WM	
properties, such as axonal diameter and density, g-ratio 
(i.e.	the	ratio	of	the	inner	to	outer	fibre	diameter)	of	indi-
vidual axons, myelin thickness, and myelin density in hu-

man brain tissue. We use ultra-high resolution histology 
to characterise these microstructural properties in WM 
tracts in order to improve reference data for the interpre-
tation	of	structural	MRI	findings.
MRI-scanned post-mortem tissue samples from a vari-
ety of WM structures, such as the optic chiasm, the cor-
ticospinal tract, and the corpus callosum are processed 
to	obtain	semi-	(500 nm)	and	ultra-thin	(50 nm)	sections.	
Light microscopy of semi-thin sections, and especially 
electron microscopy of ultra-thin sections are restricted 
by	a	very	small	field	of	view.	To	overcome	this	limitation,	
we optimised our pipeline for entire cross-sections of 

3.3.3

A

C

D

B Figure	 3.3.2.2	 	 U-fibre	 connectivity	 mapping	 between	 V1	 and	 V2	
demonstrated for six independent hemispheres from three healthy 
participants. (A) The principle of retinotopic projection suggests 
highly	efficient	connectivity	between	 retinotopically	corresponding	
areas within V1 and V2, (B) reflected in the pattern of connectivity 
obtained using tractography. The relative probabilistic tractography-
derived	 streamline	 counts	 were	 used	 to	 define	 the	 connectivity.	
U-fibre	geometry	mapping	shown	in	3D	for	candidate	(C)	retinotop-
ic	and	(D)	non-retinotopic	connections.	Short	fibres	are	not	strictly	
U-shaped and follow the pattern of the cortical folding closely. 
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human tissue samples in semi-thin sections and a large 
fi	eld	of	 view	 in	ultra-thin	sections.	For	a	comprehensive	
description of tract properties we use high-resolution light 
microscopy	 images	 (resolution:	 250 nm)	 of	 cross-sec-
tions	of	entire	 tracts	 (~10 mm2; Figure 3.3.3.1). Parts of 
these	light	microscopy	images	(111x111 µm)	were	manu-
ally segmented by M.M. and T.T. into three structural com-
partments, i.e. axonal cytoplasm, myelin, and background 
to train a deep-learning algorithm (Figure 3.3.3.2). Axon 
density and diameter, g-ratio, myelin thickness, and my-
elin density can then be derived from these images. The 
trained deep-learning algorithm will be able to compute 

these microstructural parameters for the entire cross-sec-
tions of tracts. To evaluate the quality of automatic seg-
mentation of light microscopic images we use adjacent 
ultra-thin sections processed for electron microscopy.
Microscopical	 analysis	 and	 quantifi	cation	 of	 human	
brain WM properties within our project will improve the 
understanding of MRI contrasts. The combination of the 
acquired MRI data and histological measurements from 
the same samples will provide unique insight into the mi-
crostructural composition of human brain WM tracts and 
help to understand which are the most meaningful prop-
erties	to	disentangle	complex	fi	bre	compositions.

Evolution of cortical myelination in hominoids
 Lipp, I. 1,  Kirilina, E. 1,  2,  Jäger, C. 1,  Morawski, M.  3,  Jauch, A. 1,  Pine, K. 1,  Edwards, L. J. 1,  Eichner, C. 1,   Anwander, A. 1, 
  Friederici, A. D. 1,  Wittig, R. 4,  Crockford, C. 4, &   Weiskopf, N. 1, 5
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Center for Computational Neuroscience, Free University Berlin, Berlin, Germany
3 Paul Flechsig Institute of Brain Research, Leipzig University, Germany
4 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
5 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany

Comparing brain ontogeny across hominoid species 
provides important insights into the evolution of human 
cognition and behaviour. However, developmental stud-
ies on cortical brain maturation in great apes are rare and 
mostly rely on captive primates. The captive environment 
may not fully promote brain plasticity, and primates raised 
in captivity do not express their typical entire behavioural 

repertoire. In this unique collaborative project, we study 
cortical myelination in whole post-mortem brains of wild 
and captive chimpanzees and other great apes at differ-
ent developmental stages, by combining ultra-high resolu-
tion quantitative magnetic resonance imaging with histol-
ogy.

3.3.4

Figure 3.3.3.1  High-resolution light microscopy image of a cross-
section of a whole human corticospinal tract (CST) at the level of 
the medulla oblongata. Human samples of different tracts (optic 
chiasm, corpus callosum, CST) were obtained at autopsy with pri-
or informed consent and approved by the responsible authorities. 
Following	standard	procedures,	 the	blocks	were	 immersion-fi	xed	 in	
3 %	formalin	and	1 %	glutaraldehyde	in	phosphate	buffered	saline	at	
pH	7.4.	We	dissected	the	left	CST	from	a	500 μm	vibratome	slice	of	a	
medulla oblongata sample. This section was contrasted in osmium 
tetroxide, dehydrated in graded acetones, and embedded in Durcupan 
resin.	Semithin	(500 nm)	sections	of	the	left	CST	were	cut	with	an	ul-
tramicrotome (Reichert Ultracut S, Leica). Sections were stained with 
toluidine blue, coverslipped, and digitised with an AxioScan Z1 micro-
scope (Zeiss, 40x, 0.9Na).

Figure 3.3.3.2  Manual and automatic segmentation of high-reso-
lution light-microscopy images. Left: An unsegmented semi-thin 
(500 nm)	section	stained	with	toluidine	blue.	Middle:	manual	segmen-
tation of myelin (red) and axons (green). This is one of the images we 
used to train the deep-learning algorithm. Right: automatic segmenta-
tion by the trained deep-learning algorithm, myelin is depicted in grey, 
axons in white, and background in black.
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In the pilot phase of the project, we studied the brains of 
six chimpanzees that have died from natural causes (be-
tween 3 weeks and 32 years old). The tissue was collect-
ed	and	formalin-fi	xed	within	hours	after	death.	The	high	
tissue quality enabled myelin-sensitive MRI multi-param-
eter	mapping	at	high	fi	eld	strength	with	300 μm	isotrop-
ic resolution. The combination of whole-brain coverage 
and ultra-high resolution allowed characterisation of my-
eloarchitecture across the entire brain. Whole-brain MRI-
measures were validated by various histological methods 
in selected brain regions (Figure 3.3.4.1).

We have established MRI-based mapping of myeloarchi-
tecture in great apes at unprecedented resolution, pro-
viding a unique resource for comparative neuroscience 
research. Combined with white matter connectomics 
and behavioural characterisation of the same individu-
als (conducted by our collaborators at the Department of 
Neuropsychology and MPI EVA), these data will open new 
doors for a better understanding of the functional neuro-
anatomy	underlying	human-specifi	c	traits.

Figure 3.3.4.1  qMRI maps of two wild chimpanzees at different developmental stages. Various quantitative MR parameters (R1, R2*, PD and 
MT	saturation)	were	acquired	 in	a	human	7	Tesla	MRI	scanner	(Siemens	Healthineers,	Erlangen,	Germany)	with	ultra-high	300μm	isotropic	
resolution. Sagittal slices of the longitudinal relaxation rate (R1) are shown for two chimpanzees – a 3 week old and a 6 year old. Early myeli-
nation (EM) in white matter in the chimpanzee newborn is clearly visible in qMRI (R1) and the myelin histology stain (anti-myelin basic protein 
antibody). In the 6 year old chimpanzee, the myeloarchitectonically distinct primary and secondary visual areas (V1 and V2) are clearly visible 
in qMRI (R2*) and the myelin histology stain (anti-myelin basic protein antibody).
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4Space for Cognition

Our overarching goal is to crack the cognitive code. The fundamental ques-
tion in cognitive neuroscience—what are the key coding principles of the brain 
enabling human thinking—still remains largely unanswered. In our long-term 
aim to tackle this question, we use two model systems: human memory and 
the neural population code for space, representing the summed activity of neu-
rons while processing an individual’s position in its environment. 

The SatNav in the brain. One of the most fascinating discoveries in neurosci-
ence	was	the	Nobel	Prize	awarded	identification	of	spatially	responsive	cells	
in the hippocampal formation (HF). Hippocampal place cells, and grid cells in 
nearby entorhinal cortex (EC), work in concert with other spatially tuned cell 
types to signal position, direction, distance and speed. Together, they provide a 
spatial map, the brain’s SatNav, the most intriguing coding scheme outside the 
sensory system (O’Keefe & Dostrovsky, 1971, Brain Res, 34(1), 171–5; Hafting, 
et al., 2005, Nature, 436(7052), 801–6). But what are the corresponding neural 
coding mechanisms in humans? We have made important steps towards an-
swering this question.

Spatial maps in humans. We have been instrumental, along with others (see 
Epstein et al, 2017, Nat Neurosci, for a review), in translating neural coding 
mechanisms	underlying	wayfinding,	from	rodent	electrophysiology	to	the	sys-
tems level in humans. By combining fMRI with virtual-reality (VR), we have 
demonstrated that similar spatial maps exist in the human brain. Our discov-
eries include a continuous, grid-like code of space in the human network for 
episodic	memory	 (Doeller,	 et	 al.,	 2010,	Nature,	 463,	 657–61),	 the	 identifica-
tion of the human homologue of medial EC (Navarro Schröder, et al., 2015, 
eLife, 4 10.7554), and the grid system breakdown in a human genetic model 
of Alzheimer’s disease (Kunz, et al., 2015, Science, 350, 430–33). Despite the 
wealth of studies on spatial coding in the HF, whether similar coding princi-
ples support cognitive operations beyond the spatial domain remains one of 
the most exciting questions in cognitive neuroscience (Tavares, et al., 2015, 
Neuron, 87, 231-43; Constantinescu, et al., 2016, Science, 352, 1464-8; Aronov, 
et al., 2017, Nature, 543, 719–22).
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From spatial maps to cognitive maps. Is mnemonic in-
formation represented in a cognitive space? We have 
made crucial discoveries and unravelled the neural mech-
anisms	 of	 insight-triggered	 reconfiguration	 (Milivojevic,	
et al., 2015, Curr Biol, 25, 821–30), theta-driven integra-
tion (Backus, et al., 2016, Curr Biol, 26, 450-7), and mne-
monic scaling of non-spatial mnemonic space (Collin, et 
al.,	2015,	Nat	Neurosci,	18,	1562-4).	We	have	identified	a	
crucial learning rule of the hippocampus (Doeller, et al., 
2008, PNAS, 105, 5909-14; Doeller, et al., 2018, PNAS 105, 
5915-20) and provided evidence that memories are not 
stored in isolation but in hierarchical networks (Collin, et 
al., 2015, Nat Neurosci 18, 1562-4) and spatio-temporal 
event maps (Deuker, et al., 2016, eLife e16534). Finally, 
we have described attractor dynamics (Steemers, et al., 
2016, Curr Biol 26, 1750-7) and mnemonic convergence 
(Backus, et al., 2016, Nat Comm 7:11991) as neural mech-
anisms for the access of stored information.

Our long-term framework is concerned with the key idea 
that this navigation system in the brain—potentially as a 
result of evolution—provides a fundamental neural met-
ric	for	human	cognition.	Specifically,	we	propose	that	the	
brain represents our experiences in so-called ‘cognitive 
spaces’ (Bellmund, et al., 2018, Science, 362, 6415). For 
illustration, consider the simple example of describing 
cars, which you might do along two dimensions, their en-
gine power and their weight. Depending on the two fea-
tures, racing cars, for instance, would occupy a region 
characterised by high power and low weight, whereas 
campers comprise low power and high weight. We test 
the overarching hypothesis that—akin to representing 
places and paths in a spatial map—similar coding princi-
ples are involved in the formation of such cognitive spac-
es. Importantly, in our experimental framework, we inves-
tigate whether these domain-general principles support a 
broad range of our fundamental cognitive functions rang-
ing from spatial navigation, memory formation, learning, 
imagination, and perception to time processing, decision 
making, and knowledge acquisition. 

Recently, we have made initial discoveries supporting 
the concept of cognitive spaces, providing evidence for 
grid-like coding during mental simulation (Bellmund, et 
al., 2016, eLife, 5, e17089) and visual exploration (Nau, 
et al., 2018, Nat Neurosci, 21(2),188–190; see also Nau 
et al., 2018, Trends Cogn Sci, 22(9), 810–825). We have 
also found that such coding is reflected in related oscil-
latory dynamics (Staudigl, et al., 2018, Curr Biol, 28(20), 
3325-3329.e1–e4), and the deformation of mnemonic re-
sponses in environments with concurrent deformations 
of the grid code (Bellmund, et al., 2019, Nat Hum Behav). 
Furthermore, in a series of experiments we have dem-
onstrated spatial coding principles in the HF during the 
learning of abstract concepts (Theves, et al., 2019, Curr 
Biol, 29(7), 1226–1231.3) and mapping of temporal as-
pects of episodic memories in lateral EC (Bellmund, et al., 
2019, eLife, e45333). 

The tools. Discoveries are only made possible through 
innovative technologies. Our central research tools are 
functional magnetic resonance imaging (fMRI) as well 
as magnetoencephalography (MEG). We further combine 
neuroimaging with machine learning analysis techniques, 
informed	by	artificial	intelligence	tools,	and	a	wide	variety	
of cognitive tasks.

Neuroimaging. Space-resolved fMRI, as the central, high-
throughput research tool, is complemented by time-re-
solved MEG to take advantage of the high temporal reso-
lution	 and	 fine-grained	 information	 of	 multidimensional	
oscillatory	 data.	 High-field,	 layer-resolved	 fMRI	 at	 7T	 is	
the central tool to understand—on a microarchitectural 
level—how	the	specific	structure	of	the	brain	(e.g.	laminar	
organisation) constrains its functional properties.

Virtual reality and cognitive tasks. To examine cognition in 
a realistic manner, we leverage virtual reality technology 
to simulate spatial navigation as well as life-like cognitive 
tasks. A wide array of cognitive tasks are used, ranging 
from psychophysics and eyetracking to realistic knowl-
edge acquisition tasks.

Data analyses. Neural as well as behavioural data are ana-
lysed with machine learning tools. We use representation-
al similarity analysis, a multivariate analysis approach, to 
quantify properties of representational networks in fMRI 
as well as multi-sensor time-frequency and source-recon-
structed signals from MEG. A key aspect of our frame-
work is the representational architecture of cognitive 
spaces. Pattern component modelling, multi-dimensional 
scaling, and graph analyses are used to reconstruct repre-
sentational spaces. Finally, deep neural networks are ap-
plied as discovery tools to neural and behavioural data. 

Build-up phase and organisational structure. The 
Department started its work in September 2018. During 
the	first	year,	we	have	recruited	the	relevant	personnel	for	
our team, including a group leader, postdocs, PhD stu-
dents, administrative and lab technicians, and research 
assistants. We also started hosting MSc students for their 
undergraduate projects as well as PhD students from the 
newly established Max Planck School for Cognition. We 
have built up the key research lines and setup relevant lab 
facilities, including behavioural labs, psychophysics labs, 
and	virtual	 reality.	Furthermore,	 the	entire	office	and	 lab	
space on the 3rd floor of the Institute was refurbished and 
redesigned for our needs. 

In addition to the main site of the lab at MPI CBS in 
Leipzig,	we	 still	 have	 significant	 research	 activity	 at	 the	
Kavli Institute at NTNU, Trondheim, Norway. While our 
MPI and Kavli locations focus on distinct research areas 
(basic cognitive neuroscience at MPI CBS vs translational 
neuroscience at Kavli), they are complementary, with a 
multitude of interactions between sites. In the long-term, 
we plan on maintaining our strong links to translational 
neuroscience with the world-class Kavli Institute, in par-
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ticular with the neurophysiology group of May-Britt and 
Edvard Moser as well as clinical partners in Norway. This 
will generate added value for our basic cognitive neurosci-
ence research program at MPI CBS. 

We have also integrated the lab well within our own in-
stitute. New endeavours have been initiated, such as the 
lecture series ‘Mind Meeting’, and cooperations started 
with other Departments and research groups. We now 
have contact and collaboration with Leipzig University 
via an Honorary Professorship of Christian Doeller and 
the teaching activities of Mona Garvert at the University’s 
Institute for Psychology. We are well integrated within the 
Max Planck Society, with Christian Doeller being a member 
of numerous recruitment committees (for new Directors 
and group leaders), steering committees (Perspective 
commission)	 and	 Graduate	 Schools.	 More	 specifically,	
Christian Doeller is a faculty member of the Max Planck 
School of Cognition; International Max Planck Research 
School on Neuroscience of Communication: Function, 
Structure and Plasticity; IMPRS NeuroCom; International 
Max Planck Research School on Computational 

Methods in Psychiatry and Ageing Research; IMPRS 
COMP2PSYCH. In addition, Mona Garvert is also Faculty 
at IMPRS NeuroCom and IMPRS COMP2PSYCH. She also 
serves as the Institute’s representative at the HSS Section 
of the Max Planck Society. Our team is highly visible inter-
nationally and regularly presents our work at major and 
specialised international conferences (e.g. twelve presen-
tations at SfN 2019 in Chicago). We also frequently com-
municate science to the general public, including public 
lectures and a strong media presence. 

In the following section—along the lines of show-case 
examples	 of	 ongoing	 or	 recently	 finished	 projects—we	
would like to give an overview of our key research areas 
including: (1) space, (2) time, (3) memory, (4) knowledge, 
(5) learning and decision making, and (6) vision. We also 
include some of our newly developed research methods 
including: (1) laminar fMRI, (2) MEG & OPM, (3) deep neu-
ral networks, and (4) development as a ‘tool’ to examine 
neural coding.
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As a backbone of the Department’s research activities, we run fundamental 
studies on spatial navigation and neural coding in the HF. These studies con-
cern,	e.g.,	the	following	questions:	How	does	spatial	coding	enable	wayfi	nding?	
How do spatial representations remap between contexts? How does remap-
ping drive behaviour? Here, we also examine how population activity (e.g. via 
orientation clustering) is likely to be translated into the hexadirectional, grid-
like fMRI signals, distributed within (layers and possibly modules) and across 
(lateral and medial parts of) EC, and modulated by spatial context.
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Remapping and realignment in the human hippocampal formation predicts 
context-dependent behaviour
   Julian,	J.	B. 1, &       Doeller,	C.	F. 1,  2
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

To guide spatial behaviour, the brain must retrieve memo-
ries that are appropriately associated with different navi-
gational contexts. Contextual memory may be mediated 
by cell ensembles in the hippocampal formation that alter 
their responses to changes in context, processes known 
as remapping and realignment in the hippocampus and en-
torhinal cortex, respectively. However, whether remapping 
and realignment guide context-dependent spatial behav-
iour is unclear. To address this issue, human participants 
learned object-location associations within two distinct 
virtual-reality environments and subsequently had their 

memory tested during fMRI scanning. Entorhinal grid-
cell-like representations showed realignment between 
the two contexts, and coincident changes in fMRI activ-
ity patterns consistent with remapping were observed in 
the hippocampus. Critically, in a third ambiguous context, 
trial-by-trial remapping and realignment in the hippocam-
pal-entorhinal network predicted context-dependent be-
haviour. These results reveal the hippocampal-entorhinal 
mechanisms mediating human memory-guided behav-
iour and suggest that the hippocampal formation plays a 
key role in spatial decision-making under uncertainty. 

4.1.1

Figure 4.1.1  Hippocampal and entorhinal 
context-signals predict behaviour in am-
biguous situations. (A) Using a standard 
virtual-reality object-location memory task, 
participants learned four object locations 
in two separate arenas (“Square”, “Circle”). 
Aerial view schematics of the two arenas 
are shown. Following training, object loca-
tion memory was tested in these two are-
nas while participants (n=24) underwent 
fMRI scanning. (B) Memory for object loca-
tions was also tested in a third, half-square 
half-circular arena (“Squircle”). The ambigu-
ous Squircle provides a means of assessing 
the relationship between hippocampal-en-
torhinal contextual representations and 
memory-guided spatial behaviour. In partic-
ular, for each target object, there were two 
possible “correct” locations in the Squircle, 
one more consistent with the location in the 
Circle, and one more consistent with the lo-
cation in the Square. Thus, to recall object 
locations in the Squircle, on each Squircle 
trial, participants needed to retrieve either 
Square- or Circle-consistent contextual 
memories. (C) Across-scan-run similarity 
of hippocampal activity patterns over time, 
separately for Sq (red) and Ci (blue) testing trials. Values greater than 0 indicate that an activation pattern is more similar to that elicited in the 
Square across scan runs, whereas values less than 0 indicate that an activation pattern is more similar to that elicited in the Circle across scan 
runs. Hippocampal activity patterns were more similar to those elicited in the same context across scan runs than the opposite context. This 
is	consistent	with	the	existence	of	reliable	remapping	of	hippocampal	contextual	representations,	complementing	previous	fi	ndings	of	place	
cell remapping in rodents. (D) Across-scan-run similarity of hippocampal activity patterns over time, separately for Sq-consistent (red) and Ci-
consistent (blue) Squircle trials. Hippocampal activity patterns were more similar to those elicited in the context consistent with spatial mem-
ory retrieval than with the inconsistent context. This suggests that trial-by-trial hippocampal remapping supports context-dependent spatial 
behaviour. (E) We found reliable entorhinal grid-cell-like modulation in the Square and Circle, due to grid-cell-like signals in both the Square and 
Circle aligned to their respective grid orientations. Yet, grid-cell-like modulation was not observed in either the Square or Circle aligned to the grid 
orientation from the opposite context. This provides evidence of entorhinal grid-cell-like realignment across the Square and Circle, complement-
ing	previous	fi	ndings	of	grid-cell	realignment	in	rodents.	(F)	To	test	the	relationship	between	grid-cell-like	realignment	and	memory-guided	be-
haviour,	two	grid-cell-like	models	were	fi	t	to	the	entorhinal	cortex	(EC)	fMRI	signal	during	Squircle	trials.	One	model	assumed	the	grid	orientation	
(φ)	changed	on	a	trial-by-trial	basis,	consistent	with	contextual	memory	(either	Square	or	Circle	φ,	consistent	with	(B).	i.e.	behaviour).	The	other	
model	assumed	φ	changed	on	a	trial-by-trial	basis	but	inconsistently	with	contextual	memory.	We	observed	grid-cell-like	modulation	when	the	
grid orientation switched on a trial-by-trial basis, consistent with spatial behaviour, but not inconsistent with behaviour.
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Distorting the coordinate system of cognitive maps
Bellmund,	J.	L.	S. 1, 2, 3, de Cothi, W. 4, Ruiter, T. A. 3, 5, Nau, M. 3, Barry, C. 6, & Doeller,	C.	F. 1, 3 
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL
3 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
4 Institute of Behavioural Neuroscience, University College London, UK
5 Amsterdam Brain and Cognition, University of Amsterdam, NL
6 Research Department of Cell and Developmental Biology, University College London, UK

Our brain forms cognitive maps of our environment for 
spatial navigation. Recent advances suggest a central 
role of the brain’s spatial mapping system for cognitive 
functions	 beyond	navigation.	The	 regular	 firing	patterns	
of grid cells in the entorhinal cortex are thought to pro-
vide a coordinate system for cognitive maps to encode 
positions and to compute distances and directions be-
tween them. However, studies have demonstrated that 
grid patterns can be distorted, for example through the 
geometry of the boundaries forming the environment 
that the animal navigates. Here, we tested whether spa-
tial memories are systematically distorted when formed 
in an environment known to deform grid patterns in ro-
dents. In a behavioural experiment, participants navigat-
ed a square and a trapezoid environment using a high-
ly immersive virtual reality system consisting of a head 
mounted display and a motion platform that translated 
their physical steps and rotations into virtual movement. 
In each environment, participants learned the positions of 
several objects. Participants’ memory for positions in the 
trapezoid was less precise than in the square. Within the 
trapezoid, memory was particularly degraded in the nar-
row	end.	This	memory	profile	mirrors	the	severity	of	grid	
pattern distortions observed in rodents navigating a trap-
ezoid and was captured by a model grid system based 

on the successor representation. Further, outside of the 
virtual trapezoid, we asked participants to estimate the 
distances between learned positions to test for persistent 
mnemonic distortions. If positions are encoded using a 
compressed or stretched grid pattern, then grid patterns 
change more or less as a function of the distance between 
two positions. Estimates of the distances between posi-
tions, that were encoded using deformed grid patterns, 
should therefore be distorted outside of the trapezoid en-
vironment. Consistent with the predictions of our model 
grid system, participants estimated identical distances 
to be longer in the narrow than in the broad part of the 
trapezoid. We reconstructed the individual positions the 
participants remembered, from their pairwise distance 
estimates, to show that these reconstructed mnemonic 
maps explained object position memory in the trapezoid 
better	than	the	true	object	positions.	Collectively,	the	find-
ings from this behavioural experiment suggest that hu-
man positional memory is subject to distortions through 
environmental geometry that can be predicted from a 
model grid system based on the successor representa-
tion.	Our	findings	are	 in	 line	with	 the	notion	 that	 the	en-
torhinal grid system provides a metric for cognitive maps 
supporting spatial memory and other cognitive functions 
(Bellmund, et al., 2019, Nat Hum Behav).

4.1.2

Figure	4.1.2.		Deforming	the	metric	of	cognitive	maps	distorts	memory.	The	regularity	of	grid-cell	firing	patterns	is	distorted	in	a	trapezoid	com-
pared to a square. We model this distortion using the eigenvector grid patterns of the successor representation. In our highly immersive virtual 
reality setup, participants learned object positions in a square and a trapezoidal environment. Participants made larger errors for objects in the 
trapezoid compared to the square. Paralleling the distortions of grid patterns, the accuracy of participants’ spatial memory was particularly low 
in the narrow end of the trapezoid.
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Environmental anchoring of grid-like representations minimises spatial 
uncertainty during navigation behaviour
Navarro	Schröder,	T. 1, 2, Towse, B. W. 3, 4, Nau,	M. 1, Burgess, N. 3, 4, Barry, C. 5, & Doeller,	C.	F. 1, 6
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL
3 Institute of Neurology, University College London, UK
4 Institute of Cognitive Neuroscience, University London, UK
5 Research Department of Cell and Developmental Biology, University College London, UK
6 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 

Minimising spatial uncertainty is essential for naviga-
tion, but the neural mechanisms remain elusive. Here 
we combine predictions of a simulated grid-cell system 
with behavioural and fMRI measures in humans during 
virtual navigation. First, we have shown that polarising 
cues produce anisotropy in motion parallax. Secondly, we 
simulated entorhinal grid cells in an environment with ani-
sotropic information and found that self-location was de-
coded best when grid patterns were aligned with the axis 
of greatest information. Thirdly, when exposing human 
participants to polarised virtual reality environments, we 
found that navigation performance was anisotropic, in line 

with the use of parallax. Eye movements showed that par-
ticipants preferentially viewed polarising cues, which cor-
related with navigation performance. Finally, using fMRI 
we found that the orientation of grid-cell-like representa-
tions in entorhinal cortex were anchored to the environ-
mental axis of greatest parallax information, orthogonal 
to the polarisation axis. In sum, we demonstrate a crucial 
role of the entorhinal grid system in reducing uncertainty 
in	 representations	of	 self-location	 and	find	 evidence	 for	
adaptive spatial computations underlying entorhinal rep-
resentations in the service of optimal navigation.

4.1.3

Figure 4.1.3  The grid system minimises spatial uncertainty and optimises behaviour. We found that environmental geometry affects the orienta-
tion of grid-like fMRI signals. (A) First-person view of the sparse environment. (B) Red line indicates the polarisation axis of the environment, the 
blue line the orthogonal directions. (C) Spatial memory performance is anisotropic—larger along the polarisation axis. (D) Grid-like fMRI analysis 
logic. (E) Grid-like signals were clustered at angles orthogonal to the environmental polarisation axis.
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4.2Research Area 4.2Research Area 

In this research area, we aim to identify how the EC grid code and the HF en-
code temporal information. We also test whether the processing of space and 
time converge on the same neural mechanisms.
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When did that happen? Mapping the temporal relationships of memories
  Bellmund, J. L. S.1, 2, 3,  Deuker, L.4, &  Doeller, C. F.1, 2 
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
3 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL
4 Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany

Episodic memories are vivid recollections of events that 
took	place	at	specifi	c	moments	in	time.	Typically,	we	easily	
remember the chronology of important events. In this ex-
periment, we investigated the question of how the human 
entorhinal cortex supports our memory of the sequence 
in which events unfold over time. Participants learned to 

navigate	along	a	fi	xed	 route	 through	a	virtual	 city.	Their	
task was to learn where and when, during the traversal of 
the	route,	specifi	c	events	occurred.	Events	were	defi	ned	
by the objects encountered along the path. Participants 
underwent fMRI before and after learning. During these 
scanning sessions, participants saw the same objects 

4.2.1

Figure 4.2.1  Lateral entorhinal cortex maps the temporal structure of events. Participants learned a sequence of events by navigating along a 
route through a virtual city. Events encountered closely together in time became relatively more similar compared to events far apart in time. 
This resulted in a negative correlation of representational similarity and temporal distances.
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they encountered along the route, but in random order. 
This enabled us to quantify similarity changes of object 
representations from before to after learning. Object rep-
resentations in the entorhinal cortex changed in a way 
that resembled the sequence in which they were observed 
in the virtual world. Objects that were encountered in tem-
poral proximity to one another became relatively more 
similar compared to objects far apart in time. This re-
sulted in a negative correlation between representational 
change and the temporal distance between the objects in 
the	virtual	world.	 Importantly,	 this	effect	was	specific	 to	
the anterior-lateral entorhinal subregion and to the tem-
poral rather than spatial structure of the event sequence. 

Furthermore, we were able to reconstruct the timeline of 
events from the calculated representational change in 
MRI activity. Additionally, participants in whom the tem-
poral distance between objects correlated more strongly 
with representational change tended to successively re-
produce objects learned to be nearby in time when trying 
to	recall	all	objects	in	a	post-scan	memory	test.	Our	find-
ings demonstrate that the entorhinal cortex forms a map-
like representation of the temporal relationships of events 
and that the distinctiveness of this representation relates 
to how we retrieve events from memory (Bellmund, et al., 
2019, eLife, 8, e45333).



Research Area 
MEMORY

4.3Research Area 4.3Research Area 

In the memory domain, research topics include the understanding of how 
multiple events are integrated into hierarchical, dynamic, mnemonic net-
works, how episodic information is represented in cognitive spaces, how 
mnemonic networks are dynamically updated and how novel information 
is assimilated.
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Integrating episodic and spatial context signals in the hippocampus
 Nitsch,	A. 1, 2,  de Haas, N. 2,   Deuker, L. 3, &      Doeller,	C.	F. 1, 4
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL
3 Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany 
4 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Episodic and spatial memory are two major forms of 
memory. Episodic memory allows the remembering of 
events from the past, whereas spatial memory allows the 
formation of a map-like representation of the environment. 
Interestingly, these two memory forms are supported by 
the same brain structure: the hippocampus. However, the 
exact relationship between episodic and spatial memory 
processes in the hippocampus remains unclear. In this 
study we tested two different models, assuming that the 
hippocampus supports both memory forms either via 
a parallel processing mechanism or a common coding 
mechanism, respectively. For this purpose, we conduct-
ed an fMRI experiment with a life-simulation task and a 
virtual reality game to manipulate episodic and spatial 
relations between objects. In the life-simulation task, 
subjects watched two different stories whereby regular 
objects were associated with one or the other (episodic 
contexts). In the virtual reality game, subjects delivered 
objects to shops in two different neighbourhoods of a vir-
tual city. Here, regular objects were associated with one 
of the two neighbourhoods (spatial contexts). Ultimately, 

this resulted in a 2 × 2 design with pairs of objects shar-
ing both an episodic and a spatial context, pairs of ob-
jects sharing only one context (either episodic or spatial) 
and pairs of objects sharing no context. Subsequently, we 
presented all objects in picture viewing tasks to assess 
overlapping neural representations of objects, caused by 
shared episodic and/or spatial contexts, in cross-stimulus 
adaptation analyses. Preliminary results show differences 
between adaptation effects for pairs of objects sharing 
only an episodic or a spatial context, as well as a trend for 
an interaction between episodic and spatial context pro-
cessing in the hippocampus. The interaction was charac-
terised by a stronger adaptation effect for pairs of objects 
sharing both contexts. This indicates that our experimen-
tal approach is powerful enough to induce neural simi-
larity between objects sharing episodic and / or spatial 
contexts in the hippocampus. Furthermore, our results 
provide evidence for both, models of parallel processing 
and a common coding mechanism for episodic and spa-
tial memory in the hippocampus.

4.3.1

Figure	4.3.1		Integrating	episodic	and	spatial	context	signals	in	the	hippocampus.	(A)	Experimental	timeline.	Participants	fi	rst	completed	one	
of two object association tasks in a behavioural session (the spatial task is pictured). Order was counterbalanced across participants. In the 
scanner,	participants	completed	three	tasks:	the	fi	rst	picture	viewing	task	(PVT1),	the	second	object	association	task	(here	the	episodic	task	

A

B

D

E

Episodic
task

40 min. 25 min.

PVT 1 PVT 2

25 min.40 min.

Spatial
task

BA
G H

E F
DC

LK LK

contexts

FE
G H

I JI J

A B
DC

contexts

 regular 
objects

Episodic task Spatial task

 control 
objects

 regular 
objects

 control 
objects

co
m

m
on

 c
od

in
g 

co
nt

ra
st

 e
st

im
at

e

–250

–200

–100

150

100

no one both

context shared

re
gr

es
so

r e
st

im
at

e 
of

 o
bj

ec
t p

ai
rs

–60

–40

–20

0

20

40

re
gr

es
so

r e
st

im
at

e 
of

 c
on

tro
l o

bj
ec

ts

–120

–100

-80

-60

-40

-20

0

20

40

60

80

anterior 
left HC

posterior 
left HC

anterior 
right HC

–300

–200

–100

0

100

200

300

posterior 
right HC

sh
ar

ed
 v

s.
 n

on
 s

ha
re

d 
co

nt
ra

st
 e

st
im

at
e

episodic group

spatial group

C Prediction for parallel processing 
mechanism

B A

C A

G A

E A

shared episodic context

sh
ar

ed
 s

pa
tia

l c
on

te
xt yes no

no
ye

s BA GA CA EA

BO
LD

BO
LD

BO
LD

BA GA CA EA

BA GA CA EA

Prediction for common coding 
mechanism

Adaptation 
analyses 
based on 

object pairs   



147

Research Area MEMORY

is pictured), and the second picture viewing task (PVT2). (B) Task design. Both the spatial and episodic tasks were divided into two contexts. 
Each regular object appeared in both tasks, but only in one episodic and one spatial context (see object A as an example). Each control object 
appeared only in one task but in both contexts of the given task (see object I as an example). (C) Analysis logic. The distribution of objects over 
the task contexts resulted in a 2x2 design of object pairs. This design included pairs of objects sharing both an episodic and a spatial context, 
pairs of objects sharing only one context (either episodic or spatial), and pairs of objects sharing no context. We analysed adaptation effects 
of these object pairs in the independent PVTs to test hypotheses of two different models of hippocampal involvement in episodic and spatial 
memory. In brief, the parallel processing model assumes that episodic memory is supported by the anterior and/or left hippocampus whereas 
spatial memory is supported by the posterior and/or right hippocampus. Therefore, this model predicts a higher adaptation effect in the anterior 
and/or left hippocampus for pairs of objects sharing an episodic context (in the example in panel C, B-A and C-A) compared to pairs of objects 
sharing no episodic context (G-A and E-A in panel C). Furthermore, it predicts a higher adaptation effect in the posterior and/or right hippocam-
pus for pairs of objects sharing a spatial context (here in the example, B-A and G-A) compared to pairs of objects sharing no spatial context (C-A 
and E-A in the example). The common coding model assumes that episodic and spatial memory are processed in the same way in the whole 
hippocampus	(without	any	subfield	differences).	Therefore,	this	model	predicts	the	highest	adaptation	effect	in	the	hippocampus	for	pairs	of	
objects sharing both an episodic and a spatial context (in the example B-A). Furthermore, it predicts the second highest adaptation effect for 
pairs of objects sharing only one (either a spatial context (G-A in the example) or an episodic context (C-A in the example)) and the lowest ad-
aptation effect for pairs of objects sharing no context (E-A in the example). (D) Common coding during PVT2 in the hippocampus ROI. The left 
bar depicts the contrast estimate of the common coding effect in the hippocampus during PVT2 (T(29)= -2.8820, p= 0.0037). The contrast is 
based on the common coding model, which predicts an adaptation effect that scales with the context associations between object pairs (no 
context shared, one (episodic or spatial) context shared, both episodic and spatial context shared). Additionally, the effect is visualised by mean 
estimates	of	the	different	object	pair	regressors.	The	adaptation	effect	for	control	objects	was	not	significant	(T(29)=	-0.8025,	p=	0.2144).	Dots	
represent	single	participant	values.	Error	bars	are	the	standard	error	of	the	mean.	(E)	Parallel	processing	during	PVT1	in	hippocampal	subfields.	
Depicted are the mean contrast estimates of the shared context vs non-shared context contrast, divided by group (episodic vs. spatial group) 
and	hippocampal	subfields.	There	was	no	significant	interaction	between	group	and	either	hemisphere	and/or	axis.	Dots	represent	single	par-
ticipant values. Error bars are the standard error of the mean.
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Over the last decades, converging evidence from animal electrophysiology and 
human neuroimaging studies led to the notion that the hippocampal forma-
tion encodes a mental map of the spatial environment (O’Keefe, & Nadel, 1978, 
Clarendon Press). Recent evidence suggests that the same hippocampal cod-
ing principles are also involved in cognitive domains beyond spatial naviga-
tion (Nau, et al., 2018, Nat Neurosci, 21(2):188-190; Aronov, Nevers, & Tank, 
2017, Nature, 543(7647), 719-722; Constantinescu, O’Reilly, & Behrens, 2016, 
Science, 352(6292), 1464-1468; Tavares, & et., 2015, Neuron, 87(1), 231-43). 
Specifi	cally,	they	might	provide	a	suitable	format	for	neural	concept	represen-
tations, as a map-like organisation of knowledge would allow inference of rela-
tions that were not directly experienced and transfer of meaning to novel input. 
These two processes are critical for the flexible use of knowledge.
We	provided	fi	rst	evidence	for	such	a	map-like	code	for	concepts,	by	demon-
strating that the hippocampus encodes distances in a multidimensional space 
spanning continuous feature dimensions that were critical to the acquisition 
of a novel concept (Theves, Fernandez, & Doeller, 2019, Curr Biol, 29(7), 1226-
1231). In a follow-up study, we determined whether the hippocampus maps 
new information according to all feature dimensions (feature space) or spe-
cifi	cally	according	to	conceptually-relevant	dimensions	(concept	space).	The	
critical aspect of a concept space, as opposed to a feature space, is that its 
structure can be used to transfer meaning to novel information based on gen-
eralizable	 rules.	We	 implemented	 this	via	a	categorisation	 task.	Specifi	cally,	
a stimulus was assigned to one of two categories, according to the ratio of 
values	on	two	of	its	three	feature	dimensions.	These	then	defi	ned	the	axes	of	
the two-dimensional concept space, with the diagonal serving as the catego-
ry boundary. We found that the hippocampus encodes distances in a space 
along the two conceptually relevant dimensions, as opposed to distances in 
the	surrounding	higher-dimensional	feature	space	defi	ned	along	all	feature	di-
mensions. We ruled out that this result is explained by a difference in complex-
ity between mapping two- versus three-dimensional information. 
Together our results provide critical evidence for the view that knowledge is 
encoded in a map-like format and furthermore propose a domain-general role 
of the hippocampus in coding information along continuous dimensions, con-
tributing to a general code for cognition.
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The hippocampus encodes distances in multidimensional feature space 
Theves,	S. 1, 2, 3, Fernandez,	G. 1, & Doeller, C. F. 3, 4
1 Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
2 Radboud University Medical Center, Nijmegen, NL
3 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
4 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

The hippocampal formation encodes maps of the physi-
cal environment (O’Keefe, & Nadel, 1978, Clarendon 
Press). A key question in neuroscience is whether spatial 
coding principles also provide a universal metric for the 
organisation of non-spatial information. Initial evidence 
for this comes from studies revealing directional modu-
lation of fMRI responses in humans (Constantinescu, et 
al., 2016, Science, 352, 1464–1468; Tavares, et al., 2015, 
Neuron, 87, 231–243) during navigation through abstract 
spaces and the involvement of place and grid cells in en-
coding of non-spatial feature dimensions (Aronov, et al., 
2017, Nature, 543, 719–722). However, a critical feature of 
a map-like representation is information about distances 
between locations, which has yet only been demonstrat-

ed for physical space (Morgan, et al., 2011, J Neurosci, 
31, 1238–1245; Deuker, et al., 2016, eLife, 5, 5). Here, we 
probed whether the hippocampus similarly encodes dis-
tances between points in an abstract space, spanned by 
continuous stimulus-feature dimensions that were rele-
vant to the acquisition of a novel concept. We found that, 
after learning, two-dimensional distances between indi-
vidual positions in the abstract space were represented 
in the hippocampal multi-voxel pattern, as well as in the 
univariate hippocampal signal as indexed by fMRI adapta-
tion. These results support the notion that the hippocam-
pus computes domain-general, multidimensional cogni-
tive maps along continuous dimensions (Theves, et al., 
2019, Curr Biol. 29(7),1226-1231).

4.4.1

Figure 4.4.1  The hippocampus maps distances in multidimensional feature space as a function of concept learning. (A) Design: Via a catego-
risation	task	(right),	participants	acquire	a	novel	concept	of	two	symbol	categories	(A	and	B	symbols),	defined	along	two	continuous	stimulus	
feature	dimensions	(opacity	and	size)	and	further	learned	to	associate	objects	with	specific	symbols	(left).	(B)	During	object-viewing	blocks,	
subsequent to concept learning in (A), adaptation of the hippocampal BOLD signal scaled with the two-dimensional distance between succes-
sively presented objects in concept space.
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The hippocampus maps 2D concepts in 3D feature space 
Theves,	S. 1, 2, 3, Fernandez,	G. 1, & Doeller, C. F. 3, 4
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
3 Radboud University Medical Center, Nijmegen, NL
4 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

The hippocampal formation encodes maps of space 
and a key question in neuroscience is whether its spa-
tial coding principles also provide a universal metric for 
the organisation of non-spatial, conceptual information. 
Previous work has demonstrated directional coding dur-
ing navigation through a continuous stimulus-feature 

space, as well as mapping of distances in a feature space 
that was relevant for concept learning. Here we provide 
the	first	unambiguous	evidence	for	a	hippocampal	repre-
sentation of the actual concept space. We show that the 
hippocampal distance signal selectively reflects the map-
ping of conceptually-relevant rather than of all feature 

4.4.2
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dimensions in feature space. During fMRI scanning, we 
presented every-day objects, which had beforehand been 
associated	with	specific	values	on	three	continuous	fea-
ture dimensions. Crucially, only two dimensions were rel-
evant to concept learning. We found that hippocampal re-
sponses to the objects reflected their relative distances in 
a	space	defined	along	conceptually-relevant	dimensions	

as opposed to all task-relevant dimensions. We ruled out 
that this result could be explained by a difference in com-
plexity between mapping two- versus three-dimensional 
information.	Together,	these	findings	suggest	that	the	hip-
pocampus supports knowledge acquisition by dynamical-
ly encoding information in a space spanning the dimen-
sions	that	define	concepts.

Integrating knowledge from physical and abstract spaces
Kuhrt,	D. 1, Bellmund, J. L. S. 2, 3, Kaplan,	R. 1, Gärdenfors,	P. 4, & Doeller, C. F. 1,2 
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
4 Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden

How do we represent knowledge? One intriguing idea is 
that our knowledge is stored using a spatial representa-
tional format: a cognitive map. Studying spatial naviga-
tion has shed light on the underlying neural mechanisms, 
with recent work suggesting that cognitive map-like cod-
ing of physical space might also underlie conceptual 
knowledge. Examining how spatial and conceptual in-
formation is integrated, we created a two-dimensional 
conceptual space and a corresponding virtual model of 
a	 physical	 space.	 Space-defining	 features,	 such	 as	 di-
mensionality, size, shape and informational content, were 
carefully matched. Testing object-location memory, par-
ticipants learned to navigate both spaces using identi-
cal egocentric controls and successfully created object-
location associations. Further, participants were able 
to transfer knowledge about object positions from one 

space to the other. We probed object representations in a 
passive-viewing fMRI task both before and after learning, 
allowing us to assess the change in representation. We 
used multivariate pattern analysis to test if neural similar-
ity, after training, scales with distances between objects 
and whether this scaling holds for the integrated map of 
both spaces. Preliminary fMRI analyses have uncovered 
pattern similarity changes in the hippocampal formation 
and prefrontal regions following knowledge acquisition 
in	 both	 spaces.	 Our	 findings	 demonstrate	 a	 transfer	 of	
knowledge between cognitive maps that differ in content, 
as	well	 as	domain.	Taken	 together	with	findings	 from	a	
parallel behavioural study using immersive virtual reality, 
our data highlight potential domain-invariant navigational 
codes that transcend physical space and help us navigate 
our knowledge.

4.4.3

Figure 4.4.2  The hippocampus maps 2D concepts in 3D feature 
space. (A) Design: Participants learn a novel concept of two symbol 
categories (symbols A and B) via a categorisation task. Only the rela-
tion of two of the symbols’ three feature dimensions is relevant for 
categorisation (opacity and dot frequency, but not stripe frequency). 
This results in a 2D-concept but 3D-feature space according to which 
objects could be organised. (B) After learning, the hippocampus rep-
resented the 2D conceptual distances between objects but not their 
3D feature-based distances. (C) This effect is not driven by differenc-
es in dimensionality, as 2D-distance predictions derived from a com-
bination with the conceptually-irrelevant dimension do not reproduce 
the effect. 
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Figure 4.4.3  Integrating cognitive spaces. (A-D) experimental design of the behavioural part of the experiment. Participants learned to navigate 
in	a	physical	space	(PS)	and	a	conceptual	space	(CS).	PS	was	defined	by	the	x-	and	y-coordinate	in	a	square	virtual	environment.	CS	was	de-
fined	by	the	number	of	circles	and	rectangles	shown	on	the	screen.	(A)	examples	of	participant’s	viewpoints.	Left:	PS,	right:	down	sampled	CS.	
The triangles in the CS were added as placeholders, so that each position had the same visual complexity. (B) controls the participants used for 
egocentric navigation through the spaces. The sliders were used to determine the angle. Slider 1 encoded this by choosing the sine of the view-
direction	(α),	while	slider	2	used	the	cosine	of	α.	Sine	and	cosine	of	α	are	directly	linked	to	the	rate-of	change	of	dimensions	x	and	y.	‘Execute’	was	
used	to	elicit	forward	movement	in	the	direction	of	α.	C.	link	between	colour	and	α.	To	encode	the	first-person	view	in	the	CS	a	colour	code	that	
mimicked the wall-colours in the PS was adapted. Shapes mapped on the cosine dimension (circles) would receive the corresponding colour 
shown in (C). Shapes in the sine dimension (rectangles) were treated equally. (D) the integrated map of both spaces. CS and PS were matched 
in size, complexity and informational content so that the spaces could be integrated. Participants learned to associate objects with the shown 
positions either in the CS (C numbers) or the PS (P numbers). Object A was present in both spaces at the same position and could be used as 
an anchor for the integration. (E) behavioural results group level. Black line shows chance level. m-CS/m-PS: mean memory scores for CS or PS 
objects per participant, t-CS/t-PS: mean transfer score for objects learned in either PS or CS and then tested in the other space. This transfer 
task was the last experimental task. Participants were generally unaware of the spatial nature of the CS. (F) fMRI paradigm. Participants per-
formed this passive viewing task of the objects associated with the locations before and after memory training. (G) Feature selection was done 
by	training	a	linear	SVM	on	the	trial-wise	t-maps	for	object	identity	decoding.	The	top	30%	of	voxels	from	each	ROI	for	decoding	were	chosen	to	
be included in the following representational similarity analysis (RSA). Shown here are hippocampus (HP) and entorhinal cortex (EC) ROIs con-
taining the voxels selected in the analysis. Bright yellow means a voxel was selected in most subjects, darker colours mean a voxel was selected 
in few participants. (H) representational similarity matrix (RSM) for all objects sorted according to position. The RSM was used to compare to 
the model RSMs in J and I. (J) context model, testing the idea that objects learned in the same space are more similar than objects learned 
in different spaces. (I) integrated distance model, testing the idea that objects located close in space are more similar than objects far apart. 
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Mapping multimodal abstract spaces
 Sandøy,	L.	B. 1,   Julian,	J.	B. 1, 	Sommer,	L. 1, &   Doeller,	C.	F. 1, 2 
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Spatial coding in the hippocampal formation has tradition-
ally been studied in the context of navigation. However, 
recent studies suggest that the hippocampal formation 
may mediate a diverse range of cognitive functions be-
yond navigation, including conceptual learning. The hip-
pocampal formation may be involved in concept learning 
since	concepts	often	are	defi	ned	based	on	a	set	of	con-
tinuous feature dimensions, akin to the latitude and longi-
tude of navigational space. Importantly, most real-world 
concepts	are	defi	ned	based	on	multimodal	features.	For	
example,	different	citrus	fruits	can	be	defi	ned	by	their	co-
lour and amount of sweetness, which are derived from vi-
sual and gustatory sensory modalities, respectively. Yet, 
whether the hippocampal formation is involved in learning 
multimodal concepts is unknown. Our main objective was 
to develop a multimodal conceptual learning task to inves-
tigate hippocampal representations of non-navigational 
domains.	 More	 specifi	cally,	 are	 multimodal	 conceptual	
spaces represented similarly as navigational cognitive 
maps? To address this question, we developed a comput-

er-based, multimodal, concept learning task using pitch 
and colour to create a two-dimensional continuous con-
cept space. In this task, participants were trained to as-
sociate	 specifi	c	 pitch/colour	 combinations	with	 distinct	
symbols. Participants then performed memory tests for 
these stimulus-symbol associations using a behavioural 
task, modelled after standard assays of spatial memory 
during navigation. Preliminary results show that partici-
pants were able to successfully manoeuvre around in this 
multimodal concept space. The results indicate that par-
ticipants formed an integrated representation of the mul-
timodal space, beyond simply learning the correct stimu-
lus-symbol associations. Follow-up studies are currently 
exploring whether representations of multimodal space 
obey the same principles as map-like representations of 
navigational space. We are also using fMRI to interrogate 
the role of the hippocampal formation in supporting such 
representations. Together, this research will reveal how 
new concepts are learned, and whether similar processes 
guide conceptual learning and spatial navigation.

4.4.4

Figure 4.4.4  Spatial learning of non-spatial multimodal features. (A) The multimodal space. Desktop-based “navigation” in 2D multimodal space 
with colour (vision) and pitch (audition) as feature dimensions. Participants learned to associate four unique stimulus combinations (black 
spots)	with	Greek	symbols.	(B)	In	the	target	estimation	phase	(upper	fi	gure),	the	participant	pressed	a	key	to	create	the	target	combination	
associated	with	the	Greek	symbol.	In	the	target	imagination	phase	(lower	fi	gure),	the	participant	was	presented	with	an	automatic	change	in	
stimulus	and	had	to	imagine	the	continued	trajectory	before	deciding	which	symbol	the	fi	nal	imagined	combination	would	match.	(C)	Results	
for the target estimation phase showed a circular response distribution based on participants’ trajectories to the target combinations. This in-
dicates that they used both dimensions in that phase. The star represents all target combinations. (D) Results for the target imagination phase 
show that participants, throughout the trials, were able to choose the correct symbols, based on their imagined continued trajectories. Their 
performance	was	signifi	cantly	above	chance	(red	line).	Together,	our	results	indicate	that	multimodal,	abstract,	feature	spaces	are	represented	
in a manner similar to navigational cognitive maps.
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4.5Research Area 4.5Research Area 

Research in this area is expressed along the following lines: How does deci-
sion-making organise experiences, according to an internal map-like model of 
the current task, and thereby structure memory? How does the structure of 
mental maps contribute to decision-making?
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Organising relational knowledge for value generalisation
  Garvert,	M.	M. 1,  Schuck, N. W. 2, &   Doeller,	C.	F. 1, 3
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
3 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway

It has been suggested that the brain organises know-
ledge about the relationships between positions in space 
and non-spatial regularities in a cognitive map. Such a 
representation of events and knowledge may facilitate 
goal-directed behaviour by enabling the generalisation of 
value or other information across related states. Here, we 
combined a virtual reality task with computational mod-
elling and functional magnetic resonance imaging (fMRI) 
to investigate whether humans generalise across relat-
ed states to infer reward values that were never directly 
experienced. In this task, spatial relationships between 
stimuli learned on day 1 predict reward relationships in 
a choice task on day 2. We found that participants not 
only update the stimulus-reward associations they experi-
ence directly, but they also use their knowledge about the 
relationships between stimuli to predict values of stimu-
li that were not directly sampled. This behaviour can be 
captured by a normative Bayesian model of the believed 
value distribution, which is updated in accordance with 

participants´ choices. Relational knowledge organised in 
cognitive maps can thus be used to extrapolate across 
related states and thereby facilitate novel inference. Using 
fMRI, we investigated the neural dynamics underlying the 
spread of values across cognitive maps in hippocampal-
medial prefrontal networks. We found that a hippocampal 
cognitive map, combined with a prefrontal/striatal value 
representation, enabled value inference. Together, our 
approach opens up the possibility to connect seemingly 
disparate	fi	elds	of	spatial	 coding,	 learning,	and	decision	
behaviour. 
Our experiences are highly complex and unlikely to recur 
in the same form and context. Nevertheless, we accu-
mulate behavioural repertoires that help us maximise re-
wards across a wide range of situations. This is possible 
because our environment is replete with statistical regu-
larities and similar cause-effect relations hold across re-
lated experiences. By extracting statistical structure and 
recombining it in novel ways, the brain can predict states 

4.5.1

Figure 4.5.1  Value generalisation in space. (A) Stimulus arrangement in the arena. (B) Values associated with each stimulus in the two contexts. 
Two inference objects per context can never be selected in the choice task. (C) True value (left) and inferred value (right) of the inference objects.  
(D) Final believed peak location in a Bayesian model estimating the value peak. (E) Correlation between distance to real peak and value infer-
ence. (F) Representational similarity analysis reveals spatial map in hippocampus and value map in medial prefrontal cortex.
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and reinforcements that were never directly experienced. 
This type of inference requires an organisation of know-
ledge that enables rapid computations of relationships. In 
space, this is achieved by representing landmarks in a hip-
pocampal cognitive map. This map provides a coordinate 
system that can be used to compute distances between 
landmarks, even if they have never been experienced to-
gether. However, despite substantial progress in under-
standing how the brain stores relational knowledge in 
cognitive maps, it remains unclear how maps are used for 
novel inference. Here, we combined a novel virtual reality 
task with computational modelling to investigate whether 
humans, using learned knowledge about the relationships 
between stimuli, infer stimulus-reward associations that 
were never directly experienced. In this task, the spatial 
position of stimuli learned by navigating in a virtual arena 
on day 1 (Fig. 4.5.1A) predicted stimulus values on day 2 
(Fig. 4.5.1B). Participants learned two Gaussian distribu-
tions of value, centred on a particular peak location in the 
arena, by repeatedly choosing between pairs of stimuli. 
We found that updates of stimulus-reward associations 
in the choice task went beyond directly experienced as-
sociations. Rather, they spread across stimuli located 
nearby in the cognitive map, enabling correct decisions 
even between stimuli whose values had never been direct-
ly experienced. This became particularly evident for two 
inference objects, which could never be selected during 
the choice task. Despite the absence of direct experience, 
participants inferred the corresponding values based on 

the distance, in space, to other stimuli whose values were 
known (Fig. 4.5.1C). In most subjects, map-based infer-
ence in the choice task was captured well by a Bayesian 
model, where beliefs about the centre of the value dis-
tribution were updated on a trial-by-trial basis, based on 
the likelihood of observing a choice, given the believed 
peak location and standard deviation of the distribution 
(Fig. 4.5.1D, E). Participants whose choice behaviour was 
well captured by the model were also better at inferring 
values of the inference objects (Fig. 4.5.1F, G). Relational 
knowledge organised in cognitive maps can thus be used 
to extrapolate across related states and facilitate novel 
inference. Using representational similarity analysis, we 
found that, in the hippocampus, dissimilarity between 
stimulus representations scaled with spatial distance in 
the arena (Fig. 4.5.1F), suggesting that the hippocampus 
forms a cognitive map of the relationships between stim-
uli. Pattern similarity in the ventromedial prefrontal cortex 
and striatum, on the other hand, reflected differences in 
value between stimuli (Fig. 4.5.1H). Preliminary fMRI re-
sults suggest that the hippocampal spatial and prefrontal 
value information are combined to infer the values of in-
ference objects. Together, we demonstrate that humans 
combine memory of experienced rewards, with knowl-
edge of relationships between stimuli in space, to infer 
the value of objects whose values they have never directly 
experienced. This ability may underlie the remarkable hu-
man ability to infer information based on very little data.
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4.6Research Area 4.6Research Area 

How does the brain’s navigation system shape our visual experience? The 
brain uses sensory information to construct a stable mental model of the envi-
ronment that guides memory formation and behaviour. This process is called 
‘cognitive mapping’ and it engages a large brain network spanning from low-
level sensory to high-level memory regions in the medial temporal lobe (Nau, et 
al., 2018, Trends Cogn Sci, 22, 810–825). In humans, we still know little about 
cognitive mapping, especially in the light of the behaviour it is thought to sup-
port. While traditionally studied in the context of navigation, we recently pro-
posed that encoding in the medial temporal lobe may comprise a more gen-
eral organisational principle for information in the brain (Bellmund, et al., 2018, 
Science, 362, eaat6766). To investigate this, we believe that vision and viewing 
are optimal domains, because they constitute our most prominent means to 
explore	 the	 environment	 and	 have	 a	 strong	 and	 quantifi	able	 impact	 on	 our	
memories. To study the interactions between perception, memory, behaviour, 
and cognitive mapping, we use a large spectrum of methods that enable a 
multifaceted and network-level perspective on cognition. These range from 
computational modelling and machine learning to tightly controlled viewing 
tasks and naturalistic virtual reality. Our recent work suggests that our brain’s 
spatial mapping system has adapted to our strong, visually-guided experi-
ence and behaviour (Nau, et al., 2018, Nat Neurosci, 21, 188–190) and that 
our visual and memory networks are indeed strongly intertwined (Bosch, et al., 
2014, J Neurosci, 34, 7493–7500). Our work demonstrates that cognitive map-
ping shapes perceptual processing and behaviour on a large scale (Nau, et al., 
2019, bioRxiv, DOI: 10.1101/765800) and suggests that navigation and view-
ing are guided by a common neural mechanism in the medial temporal lobe 
(Nau, et al., 2018, Trends Cogn Sci, 22, 810–825). Together, this work aims to 
answer fundamental questions about human cognition by illuminating how we 
map our environment using vision, how we plan our behaviour in space, and 
how this in turn shapes (and is shaped by) our memories.
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Hexadirectional coding of visual space in human entorhinal cortex 
Nau,	M.	 1, 2, Navarro	Schröder,	T. 1, 2, Bellmund, J. L. S. 1, 2, & Doeller,	C.	F. 1, 2, 3 
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL
3 St. Olavs Hospital, Trondheim University Hospital, Norway

Entorhinal grid cells map the local environment, but their 
involvement beyond spatial navigation remains elusive. 
We examined human functional MRI responses during a 
highly controlled visual tracking task and show that en-
torhinal cortex exhibited a sixfold, rotationally symmetric, 

signal encoding gaze direction. Our results provide evi-
dence for a grid-like entorhinal code for visual space and 
suggest a more general role of the entorhinal grid system 
in coding information along continuous dimensions (Nau, 
et al., 2018, Nat Neurosci, 21(2),188-190).

4.6.1

Figure 4.6.1  Hexadirectional coding of visual space in human en-
torhinal	cortex	(A)	Visual	grid-cell	model:	The	number	of	firing	fields	
crossed	depends	on	eye	movement	direction.	More	fields	are	crossed	
for directions aligned to grid axes (white lines) compared to directions 
misaligned to it. This relationship translates to hexadirectional biases 
of putative grid-cell population activity, in turn predicting a strong-
er fMRI signal for aligned versus misaligned directions. (B) Task: 
Participants performed a visual tracking and object location memory 
task	while	fMRI	and	eye	tracking	data	were	acquired.	Participants	fix-
ated a moving dot while memorising object locations on the screen. 
This task tightly controlled the participants’ viewing behaviour and 
balanced attention and directional sampling. (C) Results: Human 
entorhinal cortex showed the predicted hexadirectional fMRI-signal. 
Neither control symmetries, nor other regions of interest showed this 
effect. These results provide evidence for a grid-like code for visual 
space and suggest a more general role of the human entorhinal grid 
system in coding information along continuous dimensions. 

A Grid-cell model predicts hexadirectional signal

B

C Human fMRI and eye tracking

Visual tracking & object location memory task

0°

Ac
tiv

ity
Ac

tiv
ity

All trajectories

Wait
Move

Wait
Jump

Move ... Runs

Time

Gaze direction

Gaze directionEntorhinal cortex

0° 60° 120°
180°

240°
300°

180°

300°

120°

60
°

24
0°

Predicted fMRI-signal depends
on gaze direction in 60°-steps

Observed hexedirectional fMRI
signal in the entorhinal cortex

Behaviour-dependent directional tuning in the human visual-navigation 
network
Nau,	M. 1, Navarro	Schröder,	T. 1, Frey,	M. 1, & Doeller,	C.	F. 1, 2
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The brain derives cognitive maps from sensory experi-
ence to guide memory formation and behaviour. Despite 
extensive efforts, it still remains unclear how the under-
lying neuronal population activity relates to active be-
haviour and memory performance. Here, we combined 
7T-fMRI with a kernel-based encoding model of virtual 

navigation to map world-centred directional tuning across 
the human cortex. First, we present an in-depth analysis 
of directional tuning in visual, retrosplenial, and parahip-
pocampal cortices as well as the hippocampus. Second, 
we show that the tuning strength, width, and topology of 
the directional code during memory-guided navigation de-

4.6.2
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pend on successful encoding of the environment. Finally, 
we show that participants’ locomotory state differentially 
influences directional tuning in sensory and mnemonic 
regions such as the hippocampus. We demonstrate that 

locomotion and memory modulate directional tuning in 
the human brain and that high-level cognitive processes 
shape environmental coding in the service of behaviour.
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Figure 4.6.2  Behaviour-dependent directional tuning in the human visual-navigation network (A) Task: Participants performed a spatial naviga-
tion and object location memory task in virtual reality. They memorised and reported the location of objects in the virtual arena by navigating 
to them. By measuring the Euclidean distance between remembered and true object location, we assessed our participants’ spatial memory 
performance during this task. (B) Encoding model: We modelled head direction using basis sets of circular-gaussian kernels. We then estimated 
model weights for each kernel and voxel using cross-validated L2-regularised regression (model training) and used these weights to predict 
each voxel’s activity time course in independent data (model test). The resulting model performance was converted into Z-scores via bootstrap-
ping, yielding the ‘tuning strength’ of each voxel. By iterating over multiple basis sets of directional kernels differing in kernel width, we also 
estimated the corresponding ‘directional tuning width’ of each voxel. (C) Results 1: We observed a narrow-to-broad tuning width topology span-
ning from posterior to anterior parahippocampal cortex. (D) Results 2: Analysing tuning strength as a function of spatial memory performance 
revealed that network-wide directional tuning topology depends on spatial memory performance and hence, how well the environment has been 
encoded. (E) Regions of interest: We tested regions involved in deriving cognitive maps from visual experience. Early visual (EVC), retrosplenial 
(RSC), and posteromedial entorhinal cortices (pmEC), parahippocampal gyrus (PHG), and the hippocampus (HPC). (F) Results 3: Entorhinal and 
parahippocampal tuning strength as well as retrosplenial tuning width all depended on spatial memory performance. Together, these results 
reveal	directional	tuning	in	the	human	visual-navigation	network,	for	the	fi	rst	time	during	active	behaviour,	and	show	that	a	high-level	cognitive	
mapping process influences network-wide environmental processing. By doing so, these results further demonstrate the power of predictive 
modelling to study the neural underpinnings of human behaviour. 
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4.7New Research 4.7New Research 

In addition to our ‘traditional’ key research tools of VR, experimental psychol-
ogy and psychophysics, fMRI and MVPA (see above), we also work with, and 
further develop, the following new methods:
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Research method LAMINAR fMRI
We are interested in structure-function mapping: How do 
anatomical processing units in the EC and the wider HF 
relate to cognitive function? This work is concerned with 
grid coding in EC layers, the modular organisation of spa-
tial and mnemonic modules along the long-axis of the HF, 
the co-localisation of function and EC patches, and the 
specialisation of neural processing in lateral vs medial 

EC,	presubiculum,	and	hippocampal	subfi	elds.	Looking	at	
brain	signals	at	a	layer-specifi	c	level	is	important,	as	the	
layers differ with regards to the sources from which they 
receive input. Studying neural processing and interactions 
with other regions at the layer-level will hence allow us to 
develop	and	refi	ne	theories	on	cognitive	function	and	dys-
function.

A laminar triple dissociation for spatial cognition in entorhinal cortex
 Navarro	Schröder,	T. 1,   Vicente-Grabovetsky, A. 2,  Barth, M. 3,  Norris, D. G. 2, &   Doeller,	C.	F. 1, 4
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL
3 Centre for Advanced Imaging, University of Queensland, Brisbane, Australia 
4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Cortical layers are the key processing units in the brain. 
Single-unit recording studies in freely-moving rodents 
show that spatially tuned cells are distributed across the 
multi-layered entorhinal network. However, it is poorly un-
derstood how the laminar entorhinal system contributes 
to spatial cognition in humans. By combining recent ad-
vances	in	ultra-high	fi	eld	7T	fMRI,	at	submillimetre-resolu-
tion, with proxy-measures of entorhinal population activ-
ity and functional connectivity analyses, we investigated 
spatial processing in entorhinal cortex while participants 
performed a virtual reality task. We found a triple-dissoci-
ation of layer-dependent: (1) functional connectivity with 

cortical regions during navigation, (2) strength of the grid-
like hexadirectional fMRI signal, and (3) relationship to 
spatial behaviour. Cortical regions in the fusiform/para-
hippocampal cortex showed strongest functional connec-
tivity with deep entorhinal segments. In contrast, hexadi-
rectional	activity	was	strongest	in	middle	and	superfi	cial	
segments, while spatial memory performance correlated 
with the coherence of hexadirectional activity in the mid-
dle laminar segment. These results provide novel insights 
into the mesoscopic-level processing of laminar circuits 
for navigation and their relevance for cognition.

4.7.1

4.7.1.1

Figure	4.7.1.1		Layer-specifi	c	coding	of	space.	We	found	a	laminar	network	for	spatial	processing	in	humans	and	examine	its	relevance	for	
behaviour.	(A)	Object-location	memory	task.	(B)	Grid-cell	representations	are	strongest	in	middle	and	superfi	cial	segments.	(C)	Spatial	memory	
performance correlates with the coherence of grid-cell representations in the middle layers. (D) Deep segments show highest connectivity with 
visual movement areas.
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Research method MEG & OPM
Our main experimental work with fMRI is complemented 
by studies leveraging time-resolved MEG measures of os-
cillatory activity to answer the following questions. Is grid 

coding related to oscillatory activity in humans? How do 
neural oscillations support the communication between 
separate processing units in the HF and beyond?

Hexadirectional modulation of high-frequency electrophysiological activity 
in the human anterior medial temporal lobe maps visual space 
 Staudigl,	T.  1, 2, 9,  Leszczynski, M. 3, 4,  Jacobs, J. 5,  Sheth, S. A. 3,  Schroeder, C. E. 3, 4,  Jensen, O. 6, &   Doeller, C. F. 7, 8
1 Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
2 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
3 Cognitive Science and Neuromodulation Program, Department of Neurological Surgery, Columbia University College of Physicians and 

Surgeons, New York, NY, USA
4 Translational Neuroscience Division, Nathan Kline Institute, Orangeburg, NY, USA
5 Department of Biomedical Engineering, Columbia University, New York, NY, USA
6 Centre for Human Brain Health, School of Psychology, University of Birmingham, UK
7 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
8 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Grid cells are one of the core building blocks of spatial 
navigation. Single-cell recordings of grid cells in the ro-
dent entorhinal cortex revealed hexagonal coding of the 
local environment during spatial navigation. Grid-like ac-

tivity	has	also	been	identifi	ed	in	human	single-cell	record-
ings during virtual navigation (Jacobs, et al., 2013, Nat 
Neurosci, 16, 1188–1190). Human fMRI studies further 
provide evidence that grid-like signals are also accessi-

4.7.2

4.7.2.1

Figure 4.7.2.1  Grid-like modulation of broadband high-frequency MEG activity (BHA) during visual exploration. (A) BHA power (60–120 Hz) 
aligned	to	the	putative	grid	orientation	is	signifi	cantly	higher	than	misaligned	BHA	power	in	the	left	anterior	MTL.	(B)	6-fold	symmetric	modula-
tion of the BHA power, visualising the effect in (A). The x axis depicts the difference between saccade directions and the estimated putative grid 
orientations.	(C)	Other	rotational	symmetries	(4-,	5-,	7-,	and	8-fold)	do	not	show	signifi	cant	differences	between	aligned	and	misaligned	BHA	
power. (D) Putative grid orientations across participants did not show clustering. (E) Whole-brain analysis shows clustering of highest differ-
ences	(aligned	versus	misaligned,	60–120	Hz,	6-fold	symmetry)	in	the	left	temporal	lobe.	(F)	No	signifi	cant	difference	between	aligned	versus	
misaligned BHA power, in horizontal or vertical electrooculogram (EOG) data (available in 32 participants).
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ble on a macroscopic level (Doeller, et al., 2010, Nature, 
463, 657–661). Studies in both non- human primates 
(Kilian, et al., 2012, Nature, 491, 761–764) and humans 
(Nau, et al., 2018, Nat Neurosci, 21, 188–190; Julian, et al., 
2018, Nat Neurosci, 21, 191–194) suggest that grid-like 
coding in the entorhinal cortex generalises beyond spa-
tial	navigation	during	locomotion.	More	specifically,	there	
is evidence for grid-like mapping of visual space during 
visual exploration—akin to the grid-cell positional code in 
rodents during spatial navigation. However, electrophysi-
ological correlates of the grid code in humans remain 
unknown. Here, we provide evidence for grid-like, hexadi-
rectional coding of visual space by human high-frequency 
activity, based on two independent datasets: non-invasive 
magnetoencephalography (MEG) in healthy subjects and 

entorhinal intracranial electroencephalography (EEG) re-
cordings in an epileptic patient. Both data sets consist-
ently show a hexadirectional modulation of broadband 
high-frequency	activity	(60–120	Hz).	Our	findings	provide	
the	first	evidence	for	a	grid-like	MEG	signal,	indicating	that	
the human entorhinal cortex codes visual space in a grid-
like manner, and support the view that grid coding gener-
alises beyond environmental mapping during locomotion 
(Bellmund, et al., 2016, eLife, 5, e17089; Constantinescu, et 
al., 2016, Science, 352, 1464–1468; Wilming, et al., 2018; 
eLife, 7, e31745). Due to their millisecond accuracy, MEG 
recordings allow linking of grid-like activity to epochs dur-
ing relevant behaviour, thereby opening up the possibility 
for new MEG-based investigations of grid coding at high 
temporal resolution. 

Developing a prototype optically pumped magnetometer (OPM) laboratory 
for magnetoencephalography (MEG) in real-world applications
Sonntag	H. 1, Maess,	B. 1, & Doeller,	C.	F. 1, 2 
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

MEG provides direct measurements of brain electrophys-
iology in real time. However, the sensors of conventional 
MEGs are housed within a liquid helium dewar. The con-
ventional setup constrains the distance between brain 
sources and sensors to approximately 3 cm in adults. In 
contrast to conventional MEGs, OPMs are worn on the 
head, close to the brain sources and subjects are free to 
move (Boto, et al., 2018, Nature, 555, 657–661). Inspired 
by	 the	 laboratories	 in	 Nottingham	 (Sir	 Peter	 Mansfield	
Imaging Centre, School of Physics and Astronomy, 
University of Nottingham) and London (Wellcome Centre 
for Human Neuroimaging, UCL Institute of Neurology, 
University College London), we are setting up an OPM lab-

oratory for MEG. The core of our system is an array of 
25 OPMs. These sensors are able to measure extremely 
small	magnetic	fields	in	the	range	of	10	fT/√Hz.	However,	
high sensitivity is only achieved in a small operational 
range of ±5 nT (Holmes, et al., 2019, Sci Rep, 9(1)). We 
are developing sophisticated compensation coils to nul-
lify	 the	 background	magnetic	 field	 of	 the	 earth,	 and	 its	
gradients, in a 70 cm diameter sphere, in a magnetically 
shielded room. With our setup, we will be able to measure 
MEG during more realistic paradigms, where subjects are 
allowed to move their heads (Boto, et al., 2018, Nature, 
555, 657–661).

4.7.2.2

Figure 4.7.2.2  Pilot work towards OPM Prototype. (A) 1:5 model of 
an active shielding coil chamber. The coils compensate for a homo-
geneous	field	 at	 a	 target	 volume	 in	 the	 center	 of	 the	 chamber.	 (B)	
Wire	paths	for	compensating	the	mean	and	gradient	of	the	field	com-
ponent	pointing	orthogonal	to	the	figure	plane.	The	design	accounts	
for the shielding effects of the magnetically shielded room and it is 
optimised for a bi-planar coil setting.

A B

Research method DEEP NEURAL NETWORKS
We started using deep neural networks as discovery tools 
for neural and behavioural data. Deep neural networks 
were	first	applied	to	rodent	data.	In	the	future	we	will	work	

on	generalising	such	findings	to	human	imaging	data	on	
spatial navigation and concept spaces.

4.7.3
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Figure 4.7.3.1  Deep neural networks in neuroscience. (A) Top: a typical ‘raw’ extracellular recording from a single CA1 electrode. Bottom: wave-
let decomposition of the same data downsampled to 30Hz. Power shown for frequency bands from 2Hz to 15kHz (bottom to top row). (B) At 
each	time	step	wavelet	coeffi	cients	(64	time	points,	26	frequency	bands,	128	channels)	were	input	to	a	deep	network	consisting	of	2D	convo-
lutional layers with shared weights, followed by a fully connected layer with a regression head decoding to self-location, schematic of architec-
ture shown. (C) Example trajectory from R2478. True position (black) and decoded position (blue) shown for 2.76s of data. (D) Distribution of 
decoding	errors	from	trial	shown	in	(C),	mean	error	(14.2cm,	black),	chance	decoding	of	shuffled	data	(62.2cm,	red).	(E)	Across	all	fi	ve	rats,	the	
network (Model-full) was more accurate than a Bayesian decoder (Bayesian) trained on action potentials. This was also true when the network 
was limited to high frequency components (>250Hz, Model-spikes). When only local frequencies were used (<250Hz, Model-LFP), network 
performance	dropped	to	the	Bayesian	level	(distributions	compiled	from	fi	ve	cross-validations).	(F)	Decoding	accuracy	for	individual	animals.	
The network outperformed the Bayesian decoder in all cases. (G) The advantage of the network over the Bayesian decoder increased when the 
available data was reduced by downsampling the number of channels (data from R2478). Inset shows difference between the two methods.

DeepInsight: A general framework for interpreting wide-band neural 
activity 
 Frey,	M. 1, 2,  Tanni, S. 3,  Perrodin, C. 4,  O’Leary, A. 3,  Nau,	M. 1, 2,  Kelly, J. 5,  Banino, A. 6,  Doeller,	C.	F. 1, 2, &  Barry, C. 3
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Research Department of Cell and Developmental Biology, University College London, UK 
4 Institute of Behavioural Neuroscience, University College London, UK
5 Open Climate Fix, London, UK 
6 DeepMind, London, UK

Rapid progress in technologies such as calcium imaging 
and electrophysiology has seen a dramatic increase in the 
size and extent of neural recordings, yet their interpreta-
tion still depends on time-intensive manual operations. 
Decoding provides a means to infer the information con-

tent of such recordings but typically requires highly pro-
cessed data and prior knowledge of variables. Here, we 
developed DeepInsight—a deep-learning-framework able 
to decode sensory and behavioural variables directly from 
wide-band neural data. The network requires little user in-
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put and generalizes across stimuli, behaviours, brain re-
gions, and recording techniques. Critically, once trained, it 
can be analysed to determine elements of the neural code 
that are informative about a given variable. We validated 
this approach using data from rodent auditory cortex and 

hippocampus, identifying a novel representation of head 
direction encoded by CA1 interneurons. Thus, we present 
a robust, user-friendly tool for characterising and decod-
ing neural recordings.

Figure 4.7.4.1  Developmental trajectory of grid coding. (A) In rodents, grid cells are known to have a relatively long developmental trajectory, 
compared to other neural components of the hippocampal formation cognitive mapping system. To test whether human grid-cell-like represen-
tations also exhibit protracted development, we examined grid-cell-like representations of visual space in the entorhinal cortex (EC) in a large 
cohort of children (ages 5-18 years old) using a publicly available pediatric neuroimaging database (Alexander et al. 2017, Sci. Data). FMRI data 
were acquired while the children freely viewed a 10 min. movie clip. (B) We measured grid-cell-like fMRI responses as a function of gaze move-
ment direction during movie watching, the magnitude of split-half reliable EC visual grid coding increased with age, consistent with protracted 
development of grid cells in humans.
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Examining the development of cognitive and neural pro-
cesses can provide us with unique insights into basic 
neural coding principles. In particular, we are interested in 

how the development of the entorhinal grid system can, 
within the framework on cognitive spaces, explain qualita-
tive, non-linear jumps in cognitive development.

Development of entorhinal grid-cell-like representations of visual space 
Julian,	J.	B. 1, Nau,	M. 1, & Doeller,	C.	F. 1, 2
1 Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical 

Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

It has been proposed that the hippocampal formation 
supports cognitive map-like representations of both navi-
gational and visual spaces (i.e., where one is looking) 
(Nau, et al., 2018, Trends Cogn Sci, 22(9), 810–825). This 
raises the question of whether the same neural mecha-
nisms support both domains. If so, we would expect the 
visual mapping system to have a long developmental tra-
jectory, as it does in the navigational domain (Julian, et 
al., 2018, Dev Sci). To address this question, we focused 
on grid-cell-like representations of visual space in the en-
torhinal cortex (EC) in a large cohort of children (ages 
5-18 years old), for which fMRI data were acquired while 
they freely viewed a movie (Alexander, et al., 2017, Sci 
Data). We measured grid-cell-like fMRI responses as a 

function of gaze movement direction, using an analysis 
procedure previously used to identify this visual grid sig-
nal in adults (Nau, et al., 2018, Nat Neurosci; Julian, et al., 
2018,	Nat	Neurosci).	There	was	significant	 reliable	grid-
cell-like modulation in EC as a function of gaze movement 
direction. Critically, the magnitude of EC visual grid cod-
ing increased with age, due to developmental changes in 
the temporal stability of visual grid-like representations. 
This change in visual grid coding across the early life-
time could not be explained by developmental changes 
in eye movement behaviour. Our results support the idea 
that visual and navigable space are represented using the 
same neural mechanisms, and help to elucidate how cog-
nitive maps emerge during development. 

4.7.4

4.7.4.1
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Conference on Grid Cells and Cognitive Maps. Conference. 
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2019
 � Doeller, C. F., & Garvert, M. (regular). Mind Meeting Seminar 

Series. Seminar Series. Max Planck Institute for Human 
Cognitive and Brain Sciences, Leipzig, Germany.

 � Doeller, C. F. (April). BELCOMM (Berlin-Leipzig Cognitive 
Map Meeting). Workshop and Retreat. Harnack-Haus Berlin, 
Germany.

 � Bellmund, J. L. S., Garvert, M., & Kim, M. (June). IMPRS 
NeuroCom Summer School in Cognitive Science Workshop on 
Advanced Techniques in Model-Based fMRI. Workshop. Max 
Planck Institute for Human Cognitive and Brain Sciences, 
Leipzig, Germany.
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Doctoral Theses
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 � Bellmund, J. L. S. Hippocampal-entorhinal codes for space, 
time and cognition. Radboud University, Nijmegen, NL.

 � Sonntag, H. The effect of uncertainty in MEG-to-MRI coreg-
istrations on MEG inverse problems. Technical University of 
Ilmenau, Germany.

Appointments
2018

 � Kaplan, R. Associate Professor. Kavli Institute for Systems 
Neuroscience, Norwegian University of Science and 
Technology (NTNU), Trondheim, Norway.

2019
 � Doeller, C. F. Honorary Professorship for Psychology (Learning 

and Memory). Faculty of Life Sciences, Leipzig University, 
Germany.

Awards
2017

 � Doeller, C. F. ERC Consolidator Grant. European Research 
Council (ERC), Brussels, Belgium.

2018
 � Julian, J. B. Grid Cell Meeting Travel Award. Sainsbury 

Wellcome Center, University College London, UK.
 � Sonntag, H. Data Analysis Competition #2 Award. 21st 

International Conference on Biomagnetism (BIOMAG 2018), 
Philadelphia, PA, USA.

2019
 � Polti, I. Norwegian Research School in Neuroscience 

International Training Grant. Norwegian University of Science 
and Technology (NTNU), Trondheim, Norway.

 � Nitsch, A. Ehrenfried-Walter-von-Tschirnhaus-Certificate. 
Technical University of Dresden, Germany.

 � Nitsch, A. Werner-Straub-Prize for outstanding achievements 
in scientific qualifications. Technical University of Dresden, 
Germany.

 � Schäfer, T. Werner-Straub-Prize for outstanding achievements 
in scientific qualifications. Technical University of Dresden, 
Germany.

 � Theves, S. Abstract Award. Conference on Concepts, Actions, 
and Objects, Rovereto, Italy.
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Note: These publications include Christian Doeller’s publications since 2017 and publications of the DoellerLab members since 2018 
(start of the Department of Psychology at the MPI CBS). Publications of the DoellerLab members at the Kavli Institute in Trondheim 
are also included as they are highly relevant to our research topics.
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Minerva Research Group “EGG (Emotion & neuroimaGinG) Lab”

Minerva Research Group  
“EGG (Emotion & neuroimaGinG) Lab”

The central aim of the research in the Emotion & 
Neuroimaging (EGG) Lab is to understand how sex hor-
mones affect brain and behaviour across the adult life-
span. We investigate the influence of sex and sex hor-
mones on brain states in health and disease, through the 
use of multimodal neuroimaging techniques (Positron 
Emission Tomography (PET) & Magnetic Resonance 
Imaging (MRI)). Our research strives to elucidate the 
mechanisms underlying the unique vulnerabilities of 
women to depression and dementia. Our ultimate goal is 
to improve brain health for both women and men. 

We have recently demonstrated novel associations be-
tween estradiol, visceral adipose tissue, and structural 
brain networks: a potential mechanism underlying cogni-
tive decline in women (5.1.1). In other work, we quantify 
neurochemical changes across the menstrual cycle. We 
show an increase in serotonin transporter binding in pa-
tients with premenstrual dysphoric disorder (5.1.2, Fig. 
5.1.2C).	 This	 constitutes	 the	 first	mechanistic	 biomark-
er for premenstrual depressed mood in vivo. A second 
line	of	work	 further	 integrates	high-field	MRI	segmenta-
tion	 of	 hippocampal	 subfields.	We	 apply	 this	 technique	
to	explore	hippocampal	structure	previously	identified	to	
change in synchronisation with the menstrual cycle (5.1.2, 
Fig. 5.1.2B).

Finally, we study antidepressant effects on reward (5.1.3, 
Fig. 5.1.3A) and motor learning (5.1.3, Fig. 5.1.3B). Sex 
and sex hormones are known to affect antidepressant 
response and sequential motor learning. To overcome 
this bias, we chose an all-female sample of participants 
on oral contraceptives. In this homogenous sample, we 
tested the effects of increased serotonergic signalling on 
motor learning (5.1.3, Fig. 5.1.3B) and resting state elec-
troencephalography (Fig. 5.1.3C). 

Diversity	 drives	 scientific	 discovery.	 Yet,	many	 scientific	
discoveries and standards, including in the neuroscienc-
es,	largely	neglect	51%	of	the	population,	that	is,	women.	
With the male brain still often implicitly employed as the 
‘default model’, many basic and clinical neuroscience 
studies do not include equal numbers of females in their 
samples. Of the studies that do include equal numbers, 
many do not consider sex differences as a primary out-
come measure, but rather regress sex out as a covariate 
of no primary interest. We propose and apply the follow-
ing strategies to overcome this bias: (1) increase numbers 
of female study participants, (2) consider sex as a primary 
variable, (3) compare critical hormonal transition phases 
across the life-span including the menstrual cycle, and 
when	justified,	(4)	study	all-female	samples	to	provide	a	
more	in-depth	understanding	of	sex-specific	risk	trajecto-
ries and pathologies.

The	 EGG	 lab	 closely	 collaborates	 scientifically	 with	 the	
Department of Neurology (Professor Villringer) and re-
ceives valuable support from Maria Paerisch. We also 
collaborate with the Day Clinic of Neurology (Professor 
Villringer, Professor Obrig, Professor Schroeter) and with 
many research groups within the Neurology department 
(Dr. Gaebler, PD Witte, Professor Nikulin, PD Sehm) and 
within the MPI-CBS institute (Professor Männel, Professor 
Möller, Professor Engert). In connection with the several 
universities we host numerous Bachelor’s and Master’s 
students who have provided valuable co-supervision ex-
perience for our PhD students (e.g. Rachel Zsido, Eoin 
Molloy,	Carolin	 Lewis).	By	applying	our	unique	scientific	
expertise in neuropharmacology, quantitative neurochem-
ical imaging, and sex differences to traditional research 
questions in the cognitive sciences, we provide novel per-
spectives on the diversity of human cognition and brain 
plasticity.

5.1 
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Sex differences in the relationship between abdominal fat and structural 
brain network integrity: A perimenopausal model of cognitive risk 
  Zsido, R. G. 1, 2,  Heinrich, M. 1,  Slavich, G. M. 3,  Beyer, F. 1, 4,  Kharabian Masouleh, S. 1,  Kratzsch, J. 5,  Raschpichler, M. 6,  7, 
 Mueller, K. 1,  Scharrer, U. 1,  Löffler, M.  8, 9,  Schroeter, M. L. 1, 9,  Stumvoll, M. 4, 7,  Villringer, A. 1,  Witte, A. V. 1, 4, &  Sacher, J. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
4 Collaborative Research Centre (SFB) 1052 “Obesity Mechanisms,” Leipzig University, Germany
5 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Germany
6 Heart Center Leipzig, Department of Cardiac Surgery, Leipzig, Germany
7 Integrated Research and Treatment Center (IFB) Adiposity Diseases Faculty of Medicine, Leipzig University, Germany
8 Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Germany
9 Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Germany

Given rising dementia and obesity rates worldwide, the 
interactions between obesity, accelerated brain atrophy, 
and unhealthy cognitive aging are critical to understand. 
Thus, we investigated the links between visceral fat, cog-
nitive function, and brain structure (Zsido et al., 2019). We 
show	sex-specifi	c	risk	trajectories	for	brain	structure	and	

cognitive function associated with increased visceral fat 
(Fig. 5.1.1A and 5.1.1B). The study included 974 partici-
pants (473 women) distributed across the adult lifespan 
(19-79 years old). Higher estradiol levels were associat-
ed with increased brain network covariance (Fig. 5.1.1C). 
Furthermore, estradiol seems to protect brain struc-

5.1.1

Low E2        High E2

M
em

or
y 

N
et

w
or

k 
Co

va
ria

nc
e

M
em

or
y 

Pe
rf

or
m

an
ce

Age

Estradiol VAT

Age

Estradiol VAT

AA

AE

AD

B

M
em

or
y 

N
et

w
or

k 
Co

va
ria

nc
e

C

male
female

sex

2

0

–2

Estradiol log (pmol/l) 
1.5 2.0 2.5 3.0 3.5

M
em

or
y 

N
et

w
or

k 
Co

va
ria

nc
e

Low E2        High E2

F

−2

0

2

0.0 0.5 1.0 1.5
VAT/Height log (cm2)

Sex differences in visceral adipose tissue 
(VAT) accumulation:  Men show highest 
VAT-to-age ratio at earlier age, women 
during midlife.

Sex differences in association between VAT 
and a brain network critical for memory 
performance: VAT is associated with 
compromised brain network structure in both 
sexes, the association is stronger in men.

Moderation analysis: 
estradiol seems to 
mitigate the negative 
association of 
visceral adipose 
tissue on the brain 
network.

Midlife analyses: Higher estradiol levels are 
associated with increased memory network 
covariance and better memory performance in 
women during perimenopausal years (35-55).

Perimenopausal 
model of cognitive 
decline: We thus 
propose that 
perimenopause 
represents a window 
of vulnerability for 
neurodegenerative 
disease as we know 
this is when women 
experience rapid 
fluctuations and 
decreases in 
estradiol, and we 
observed this 
midlife period to 
be the time of 
fastest accumulation 
of visceral adipose 
tissue in women.

Estradiol

Memory 
Network 

Covariance
Visceral 

Fat

Estradiol levels are positively 
associated with memory network 
covariance, only in women 
      neuroprotective role of estradiol?

©
 iS

to
ck

.c
om

/A
-D

ig
it

20 40 47 60 80

Age (years)

0.5

1.0

1.5

VA
T/

H
ei

gh
t l

og
 (c

m
2 )

Figure 5.1.1



177

Minerva Research Group “EGG (Emotion & neuroimaGinG) Lab”

ture from negative effects of visceral fat (Fig. 5.1.1D). 
Importantly, this effect only occurred in women. Also in 
women, higher estradiol levels were associated with better 
structural network covariance and cognitive performance 
during perimenopausal age (Fig. 5.1.1E). In a second 
study we examined the interactions between unfavour-
able metabolic states and sex hormones (Stanikova et al., 

2019). Elevated testosterone levels and changes in body 
weight were found to have different effects on women’s 
susceptibility to depression, before and after menopause. 
These	fi	ndings	suggest	 that	 the	assessment	of	visceral	
adipose	 tissue	 and	 sex	hormone	profi	les,	 particularly	 in	
women midlife, may be essential for promoting a healthy 
brain aging trajectory in later life (Fig. 5.1.1F).

The influence of ovarian hormone fluctuations on neurochemistry and 
brain morphology: Implications for depression
 Sacher, J.,   Zsido, R. G. 1, 2,  Barth, C. 1, 3,   Lewis, C. A. 1, 4,  Bazin, P. L. 1, 5,   Weiskopf, N. 1,  Zientek, F. 6,  Rullmann, M. 6, 
 Villringer, A. 1,   Hesse, S. 6, &  Sabri, O. 6
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Psychosis Research Centre, Institute of Clinical Medicine, University of Oslo, Norway
4 International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain 

Sciences, Leipzig, Germany
5 Integrative Model-based Cognitive Neuroscience Research Unit, Universiteit van Amsterdam, NL
6 Department of Nuclear Medicine, Leipzig University, Germany

Ovarian hormones fluctuate across the female lifespan. 
These hormone transition periods appear to increase 
the	 risk	 of	 depression	 (Fig.	 5.1.2A).	 Previous	 fi	ndings	
have shown that the magnitude of estradiol fluctuations, 
around a woman’s own mean, is the strongest predictor 
of a depressive episode. In the Menstrual Cycle Plasticity 
Project (Fig. 5.1.2B) we assessed whether physiological 
fluctuations in endogenous ovarian hormones influence 
brain morphology. Pioneering longitudinal acquisition of 
7T	 ultra-high	 fi	eld	magnetic	 resonance	 imaging,	 across	

the menstrual cycle, we aim to characterise hippocam-
pal	subfi	eld	microstructure	and	structural	connectivity	in	
health. In a related, longitudinal neuroreceptor ligand PET 
study,	we	quantifi	ed	serotonin	transporter	binding	across	
the menstrual cycle (Fig. 5.1.2C). We found increased ser-
otonin transporter binding in women with Premenstrual 
Dysphoric	Disorder	(PMDD).	This	provides	the	fi	rst	mech-
anistic framework for targeted treatment strategies in 
women suffering from menstrual cycle-associated mood 
disturbances.
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Intervention controlled pharmaco-fMRI studies testing serotonergic 
effects on reward, punishment, and network motor plasticity 
  Molloy, E. N. 1, 2,   Lewis, C. A. 1, 2,   Zsido, R. G.  1, 3,  Mueller, K.  1,  Beinhö lzl, N. 1,  Blöchl, M. 1, 2, 4,  Piecha, F. 1,  Ihle, K. 1,  Pampel, A. 1, 
 Steele, C. J. 1, 5,  Scharrer, U. 1,  Zheleva, G. 1,  Regenthal, R. 6,  Sehm, B. 1,  Cesnaite, E. 1,   Nikulin, V. V. 1,  Mö ller, H. E. 1, 
 Villringer, A. 1, &  Sacher, J. 2
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
3 Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
4 Department of Psychology, University of Münster, Germany
5 Department of Psychology, Concordia University, Montréal, Canada
6 Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Germany

The rising use of antidepressants, prescribed to over 30 
million adults in the US in 2014 alone (Moore & Mattison, 
2017, JAMA Intern Med, 177, 274-275), includes selective 
serotonin reuptake inhibitors (SSRIs). SSRIs raise extra-
cellular serotonin levels by blocking the serotonin trans-
porter. How this neurochemical change influences human 
cognition and behaviour, however, is still a matter of in-
tense debate. Here, we show novel evidence that a sin-
gle SSRI dose can attenuate the brain response to pun-
ishment feedback (Fig. 5.1.3A). In a second line of work 
(Fig.	5.1.3B),	we	provide	the	fi	rst	empirical	evidence	on	the	
theory of SSRI-induced network plasticity (Castren & Hen, 

2013, Trends Neurosci, 36, 259-267). Here, we investigat-
ed the combination of SSRI administration and sequen-
tial motor learning. Escitalopram, an SSRI, was found to 
decrease brain responses to external stimuli, possibly 
reflecting improved neural processing during task perfor-
mance. The current results demonstrate the feasibility of 
adapting quality assurance criteria of clinical research to 
preclinical human study designs. This provides a crucial 
stepping-stone towards the determination of whether 
SSRI administration, in combination with experimentally 
controlled stimuli, can facilitate learning. Future work of 
our group aims to extend this line of research to cortical 
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excitatory and inhibitory states and underlying neuro-
chemical signalling. This will involve using already-ac-
quired resting state electroencephalography (EEG) data 
and quantitative MR-spectroscopy analysis of glutamate 

and	γ�aminobutyric	acid	 (GABA)	 levels	 in	primary	motor	
cortex and anterior cingulate cortex (Fig. 5.1.3C).
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Current EEG and MR-Spectroscopy Analyses: 
To investigate underlying changes in the balance between 
cortical excitation/inhibition following 
SSRI-administration, we record resting state EEG. Topogra-
phical maps of spectral slope reveal a significant increase 
in excitatory inputs following a single dose of 20 mg 
escitalopram.

We have acquired MR-spectroscopy data and use Point 
Resolves Spectroscopy (PRESS, left spectrum) for 
glutamate (Glu), and MEGA-PRESS  (right spectrum) for 
γ‐aminobutyric acid (GABA), to quantitatively measure 
major excitatory and inhibitory neurotransmitters and 
investigate potential changes related to motor learning and 
SSRI kinetics.

Acute serotonergic challenge during 
reward and punishment paradigm:
In a placebo-controlled crossover 
design, a single 20 mg dose of the 
selective serotonin reuptake inhibitor 
(SSRI) escitalopram decreases 
BOLD response to punishment in 
subcortical regions, including the 
thalamus and caudate. 
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Congresses, Workshops, and Symposia
2019

 � Sacher, J. (June). Career Opportunities in 
Psychoneuroendocrinology. Workshop. 9th IMPRS NeuroCom 
Summer School, Max Planck Institute for Human Cognitive 
and Brain Sciences, Leipzig, Germany.

 � Sacher, J., Lewis, C., Molloy, E., Zsido, R. G., Zheleva, G. 
(June). Sex Differences and the Brain. Symposium. 9th IMPRS 
NeuroCom Summer School, Max Planck Institute for Human 
Cognitive and Brain Sciences, Leipzig, Germany.

 � Sacher, J., Hesse, S., Barthel, H., Sabri, O. & Villringer, A. 
(November) iPET.11. Conference. Berlin BRAIN & BRAIN 
PET 2019. Satellite symposium. Dark Net - Are you online? 
Opportunity and Risk: Internet Addiction Disorder and Online 
Therapy. Structural segmentation analysis of the diencepha-
lon in affective disorders. Galerie 3Ringe, Leipzig, Germany.

  

2018
 � Sacher, J. & Zsido, R. G. (January) Career Development 

for Medical Students. Workshop. Max Planck Institute for 
Human Cognitive and Brain Sciences, Leipzig, Germany.

 � Lewis, C. & Sacher, J. (January/February). Sex Hormones 
and the Brain. Symposium. Matariki Winter School, Tübingen, 
Germany. 

 � Sacher, J., Ketscher, C., Neupert ,S., Zheleva, G. (October). 
21st Century Leadership Style – How to successfully manage 
evolving research projects. Workshop with Svenja Neupert, 
Kompetenzia International. Max Planck Institute for Human 
Cognitive and Brain Sciences, Leipzig, Germany.

2017
 � Sacher, J., Hesse, S., Barthel, H., Sabri, O. & Villringer, A. 

(April) iPET.8. Conference. Berlin BRAIN & BRAIN PET 2017. 
Satellite symposium. Sex Hormones and Serotonin. Max 
Planck Institute for Human Cognitive and Brain Sciences. 
Leipzig, Germany.

 � Sacher, J. & Kupfer Schneider, A (July). Navigating career 
paths and leadership for women in academia. Workshop. 
Max Planck Institute for Human Cognitive and Brain 
Sciences, Leipzig, Germany.

Awards
2019

 � Zsido, R. G. Travel Award for the 32nd Annual Meeting 
European College of Neuropsychopharmacology (ECNP). 
Copenhagen, Denmark.

 � Zsido, R. G. Best Poster Presentation Award at the 8th IMPRS 
NeuroCom Summer School. Max Planck Institute for Human 
Brain and Cognitive Sciences, Leipzig, Germany. 

 � Barth, C. Best Poster Presentation Award at the 32nd Annual 
Meeting European College of Neuropsychopharmacology 
(ECNP). Copenhagen, Denmark.

 � Heinrich, M. Deutschlandstipendium. Leipzig University, 
Germany.

2018
 � Zsido, R. G. Best Poster Presentation Award at Matariki 

Winter School and Symposium 2018: Sex Hormones and the 
Brain. Tübingen, Germany. 

 � Barth, C. Dissertation Award. Thesis title: Exploring structural 
and functional brain dynamics across the menstrual cycle. 
Medical Faculty, Leipzig University, Germany.

 � Heinrich, M. Deutschlandstipendium. Leipzig University, 
Germany.

2017
 � Sacher, J. National Alliance for Research on Schizophrenia 

and Depression (NARSAD) Young Investigator Award. Brain & 
Behavior Research Foundation, USA.

 � Sacher, J. American College of Neuropsychpharmacology 
(ACNP) Associate Membership (by invitation only). 

 � Heinrich, M. Deutschlandstipendium. Leipzig University, 
Germany.

Degrees
PhD Theses 
2017

 � Barth, C. Exploring structural and functional brain dynamics 
across the menstrual cycle. Leipzig University, Germany.
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Publications
Books and Book Chapters

Barth, C. (2017). Der monatliche Rhythmus des Gehirns: 
Grundlagenforschung zu Geschlechtsunterschieden im 
Neuroimaging. [The monthly rhythm of the brain: basic research 
on gender differences in neuroimaging]. In K. Stengler (Ed.): 
Genderperspektiven in der Medizin. Leipzig: Poege Druck.

Sacher, J. (2017). Die Rolle von hormonellen Übergangsphasen 
für Geschlechtsunterschiede in der psychischen Gesundheit. 
[The role of hormonal transition phases for gender differences 
in mental health]. In K. Stengler (Ed.): Genderperspektiven in der 
Medizin. Leipzig: Poege Druck. 

Journal Articles
Babayan, A., Erbey, M., Kumral, D., Reinelt, J., Reiter, A., Röbbig, 

J., Schaare, H. L., Ragert, M., Anwander, A., Bazin, P.-L., Horstmann, 
A., Lampe, L., Nikulin, V. V., Okon-Singer, H., Preusser, S., Pampel, 
A., Rohr, C. S., Sacher, J., Thöne-Otto, A. I. T., Trapp, S., Nierhaus, T., 
Altmann, D., Arélin, K., Blöchl, M., Bongartz, E., Breig, P., Cesnaite, 
E., Chen, S., Cozatl, R., Czerwonatis, S., Dambrauskaite, G., 
Paerisch, M., Enders, J., Engelhardt, M., Fischer, M. M., Forschack, 
N., Golchert, J., Golz, L., Guran, C. A., Hedrich, S., Hentschel, 
N., Hoffmann, D. I., Huntenburg, J. M., Jost, R., Kosatschek, A., 
Kunzendorf, S., Lammers, H., Lauckner, M., Mahjoory, K., Kanaan, 
A. S., Mendes, N., Menger, R., Morino, E., Naethe, K., Neubauer, 
J., Noyan, H., Oligschläger, S., Panczyszyn-Trzewik, P., Poehlchen, 
D., Putzke, N., Roski, S., Schaller, M.-C., Schieferbein, A., Schlaak, 
B., Schmidt, R., Gorgolewski, K. J., Schmidt, H. M., Schrimpf, A., 
Stasch, S., Voss, M., Wiedemann, A., Margulies, D. S., Gaebler, M., 
& Villringer, A. (2019). A mind-brain-body dataset of MRI, EEG, 
cognition, emotion, and peripheral physiology in young and old 
adults. Scientific Data, 6: 180308. doi:10.1038/sdata.2018.308.

Bahnmueller, J., Maier, C. A., Goebel, S. M., & Moeller, K. (2018). 
Direct evidence for linguistic influences in two-digit number pro-
cessing. Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 45(6), 1142-1150. doi: 10.1037/xlm0000642

Beyer, F., Garcia-Garcia, I., Heinrich, M., Schroeter, M. L., Sacher, 
J., Luck, T., Riedel-Heller, S. G., Stumvoll, M., Villringer, A., & Witte, 
A. V. (2019). Neuroanatomical correlates of food addiction symp-
toms and body mass index in the general population. Human 
Brain Mapping, 40(9), 2747-2758. doi:10.1002/hbm.24557.

Lewis, C. A.*, Bahnmueller, J.*, Wesierska, M., Moeller, 
K., & Goebel, S. M. (2020). Inversion effects on men-
tal arithmetic in English- and Polish-speaking adults. The 
Quarterly Journal of Experimental Psychology, 73(1), 91-103. 
doi:10.1177/1747021819881983.

Lewis, C. A., Kimmig, A.-C., Zsido, R., Jank, A., Derntl, B., & 
Sacher, J. (2019). Effects of hormonal contraceptives on mood: 
A focus on emotion recognition and reactivity, reward process-
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Max Planck Research Group  
“Adaptive Memory”

At the heart of the research in the Adaptive Memory lab 
is the insight that memory is not merely a passive capac-
ity but a constructive process. On the one hand, memo-
ries are malleable to change and disruption. On the other 
hand, they can be flexibly recombined into simulations of 
novel experiences. We seek to understand the adaptive 
nature of memory by focusing on two research areas: 

(i) Memory suppression
When people encounter a reminder of an episode that 
they rather not remember, they often attempt to keep the 
associated memory out of awareness. We have provided 
meta-analytical evidence that such suppression induces 
forgetting,	and	that	it	is	deficient	in	individuals	experienc-
ing intrusive thoughts (e.g., in anxiety and depression) 
(5.2.1). Our research examines whether suppression also 
attenuates the affective component of aversive memo-
ries using psychophysiology (5.2.2) and fear conditioning. 
At the same time, we characterise how it causes forget-
ting by deteriorating neural memory traces (5.2.2) and 
scrutinise the contribution of the prefrontal cortex (PFC) 
using transcranial magnetic stimulation. This research 
thus contributes to a comprehensive understanding of 
the mechanisms involved in controlling unwanted memo-
ries and intrusive thoughts.

(ii) Episodic simulation
Our ability to simulate prospective episodes draws on 
stored details from memory that get recombined into nov-
el events (Schacter, Benoit & Szpunar, 2017). We aim to de-
construct the network supporting episodic simulation and 
to understand its fundamental functions. For example, we 

have shown that the medial PFC encodes individual ele-
ments of our environment (e.g., familiar people) (5.2.3) 
and their associations into affective schemas (e.g., of 
our social network) (5.2.4). Moreover, the mPFC supports 
the integration of pertinent information that is distributed 
across the cortex by acting as a hub of brain-wide con-
nectivity.

Schemas mediated by the mPFC facilitate episodic sim-
ulations. We examine how these simulations convey the 
anticipated affect of a prospective event and how this ex-
perience influences farsighted decisions (Schacter, Benoit 
& Szpunar, 2017). Our work moreover demonstrates that 
we learn from such simulations (5.2.3) much in the same 
way that we learn from real events. By this, episodic simu-
lations can have a profound impact on our models of the 
world.

Taken together, our research adds to our understanding 
of the cognitive and neural processes that are fundamen-
tally involved in controlling the contents of our memories 
and the mental creation of our future.

5.2 
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Memory suppression and its deficiency in psychological disorders:  
a focused meta-analysis
Stramaccia, D. F. 1, Meyer, A. K. 1, Rischer, K. M. 2, Fawcett, J. M. 3, & Benoit, R. G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Université du Luxembourg Maison des Sciences Humaines, Esch-sur-Alzette, Luxembourg 

3 Memorial University of Newfoundland, St. John’s, Canada

It is hotly debated whether suppressing the retrieval of 
unwanted	memories	constitutes	a	beneficial	mechanism	
that causes forgetting. Here, we scrutinise the evidence 
for such suppression-induced forgetting (SIF) and ex-
amine whether	 it	 is	 deficient	 in	 psychological	 disorders	
(e.g. anxiety and depression) characterised by intrusive 
thoughts.	 Specifically,	 we	 performed	 a	 focused	 meta-
analysis of studies that have used the Think/No-Think 

procedure to test SIF in individuals either affected by psy-
chological disorders or exhibiting high scores on related 
traits. First, our analysis of the control samples (N = 534) 
indicated that avoiding retrieval indeed leads to reliable 
forgetting in healthy participants. Overall, the effect size 
was moderate to small (SMCC =	0.31,	95%	CI	[0.16,	0.45])	
and	remained	significant	after	attempting	to	account	for	
publication bias (Fig. 5.2.1A). However, moderator analy-

5.2.1

Figure 5.2.1  (A), (B), (C) Contour-enhanced funnel plots of suppression-induced forgetting (SIF) as assessed with the Think/No-Think procedure, 
displaying	individual	effect	sizes	(black	circles)	and	additional	data	points	(white	circles)	added	by	the	trim-and-fill	procedure	in	an	attempt	to	
correct	for	publication	bias.	(A)	SIF	was	significant	for	the	healthy	samples,	also	following	trim-and-fill	correction,	whereas	(B)	there	was	no	
effect	for	the	clinical	and	sub-clinical	samples.	(C)	Indeed,	they	exhibited	significantly	smaller	SIF	than	the	control	samples,	indicating	that	psy-
chological	disorders	that	are	characterised	by	intrusive	thoughts	are	associated	with	a	deficiency	in	suppressing	unwanted	memories.	(D),	(E),	
(F) Meta-analytic effect sizes for direct retrieval suppression (i.e., systemic retrieval inhibition), thought substitution (i.e., avoiding the unwanted 
memory	by	retrieving	an	alternative	one),	and	for	studies	that	left	it	to	participants	to	find	a	possible	solution	to	prevent	unwanted	retrieval.	(D) 
Healthy individuals showed the greatest SIF following direct retrieval suppression. (F) This	mechanism	also	seems	most	deficient	in	the	clini-
cal/subclinical samples.
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ses revealed that this effect varied according to the exact 
mechanism that participants were instructed to engage, 
with the greatest effect size observed for retrieval sup-
pression (SMCC	=	0.63,	95%	CI	[0.36,	0.90])	(Fig.	5.2.1D).	
Second, we found no evidence for SIF in the clinical/sub-
clinical samples (N = 534, SMCC	 =	 0.07,	 95%	C	I	 [-0.13,	
0.28]) (Fig. 5.2.1B, E). Critically, SIF in these samples was 
signifi	cantly	 smaller	 than	 in	 their	 control	 samples	 (SMD 

=	0.26	(95%	CI	 [0.06,	0.47])	 (Fig.	5.2.1C).	This	defi	ciency	
was particularly pronounced when participants were in-
structed to apply a direct retrieval suppression mecha-
nism (Fig. 5.2.1F). These results suggest that intact sup-
pression-induced forgetting is a hallmark of psychological 
well-being,	and	 that	 inducing	more	specifi	c	suppression	
mechanisms fosters voluntary forgetting. 

Tracking the impact of retrieval suppression on neural memory 
representations
 Meyer, A.-K. 1, &  Benoit, R. G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

When we experience aversive events, they often turn into 
unwanted memories. Simple reminders can then trig-
ger their involuntary retrieval and elicit a negative affec-
tive response. However, prior evidence indicates that we 
can intentionally suppress the retrieval of such unwanted 
memories. This weakens the avoided memories and can 
eventually lead to forgetting. Here, we test the hypotheses 
(1) that suppression also attenuates the affective compo-
nent of aversive memories, and (2) that it weakens memo-
ries by deteriorating their neural representations. This de-

terioration,	in	turn,	would	lead	to	a	defi	cient	reinstatement	
of the representations during subsequent recall attempts. 
In an fMRI study, participants learned associations be-
tween reminders and aversive scenes (Fig. 5.2.2.1A). They 
then repeatedly suppressed the associated scenes for 
some reminders, while they recalled the scenes for oth-
ers. Some reminders were not presented during this peri-
od (baseline condition). We assessed how suppression al-
tered participants’ ability to recall the scenes. Supporting 
(1), suppression led to a stronger reduction in the memo-

5.2.2

Figure 5.2.2.1  (A) Study phase: participants learned associations between neutral objects and pictures of aversive scenes. Pre and post phases: 
participants recalled the scenes in response to the objects and indicated the vividness of their recollections while their heart rates were be-
ing measured. Suppression phase: participants encountered the objects and were cued to either suppress or recall the associated scenes. 
(B) Previously suppressed memories were recalled less vividly than baseline memories that were not cued during the suppression phase. (C) 
A greater reduction in vividness (baseline - suppress) was associated with a stronger attenuation of heart rate deceleration (baseline - sup-
press).	We	also	obtain	a	signifi	cant	correlation	when	combining	these	data	with	those	of	a	similar	study.	Robust	spearman	skipped	correlation.	
*** p < .001. Affective pictures taken from Lang, Bradley & Cuthbert (2008).
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ries’ vividness (compared to baseline) (Fig. 5.2.2.1B), and 
a stronger reduction in vividness was associated with a 
greater	decline	 in	negative	affect	(as	quantifi	ed	by	heart	
rate deceleration) (Fig. 5.2.2.1C). To test (2), we estimated 
–	using	a	 linear	pattern	classifi	er	–	the	degree	to	which	
recall attempts were accompanied by a reactivation of 

scene information (Fig. 5.2.2.2A). We indeed observed 
weaker reactivation during the retrieval of formerly sup-
pressed versus baseline memories (Fig. 5.2.2.2C). These 
results support the hypotheses that suppression deterio-
rates declarative and affective components of unwanted 
memories by compromising their neural representations.

Figure 5.2.2.2  (A) A linear support vector machine was trained (on independent data) to differentiate neural activity patterns across the grey 
matter for intact versus morphed aversive scenes. The dot product of the resulting weight map and the activity pattern on a given trial indicates 
the degree of scene reactivation. (B) Validating this approach, we observed greater evidence for scene reactivation when participants recalled 
vs. suppressed aversive scenes. Bars: white: mean, dark: s.e.m., bright: s.d. (C) Critically, suppressed memories exhibited the strongest decline 
in scene reactivation from the pre- to the post phase. * p < .05, *** p < .001. Affective pictures taken from Lang, Bradley & Cuthbert (2008).
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Forming attitudes via neural activity supporting affective episodic 
simulations
 Benoit, R. G. 1,  Paulus, P. C. 1, &  Schacter, D. L. 2
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Harvard University, Cambridge, USA

Humans have the adaptive capacity for imagining hypo-
thetical episodes. Such episodic simulation is based on a 
neural network that includes the rostral and ventral medial 
prefrontal cortex (mPFC). This network draws on existing 
knowledge (e.g., of familiar people and places) to con-
struct imaginary events (e.g., meeting with the person at 
that place). This study tests the hypothesis that a simula-
tion changes attitudes towards its constituent elements. 
Specifi	cally,	 in	 two	 experiments,	 we	 demonstrate	 how	
imagining meeting liked versus disliked people (serving 

as unconditioned stimuli; UCS) at initially neutral places 
(serving as conditioned stimuli; CS) changes the affec-
tive value of these places (Fig. 5.2.3A). We further pro-
vide evidence that the mPFC codes for representations 
of those elements (i.e., of individual people and places) 
(Fig. 5.2.3B-C). Critically, attitude changes induced by the 
liked UCS are based on a transfer of positive affective val-
ue between the representations (i.e., from the UCS to the 
CS) (Fig. 5.2.3D). Thereby, we reveal how mere imaginings 
shape real-life attitudes.

5.2.3
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Revealing the structure of affective schematic representations in medial 
prefrontal cortex
 Paulus, P. C. 1,  Charest, I. 2, &  Benoit, R. G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 School of Psychology, University of Birmingham, UK

The rostral and ventral medial prefrontal cortex (mPFC) 
has been proposed to encode memory schemas. Such 
schemas (e.g., of our social network) are built across se-
ries of overlapping experiences and can be understood as 
network graphs comprising nodes (e.g., individual people) 
and edges (their relationships). Recently, we have shown 

that the mPFC encodes representations of individual peo-
ple and places (i.e., the nodes). Here, we test whether the 
mPFC	also	codes	for	the	edges.	Specifi	cally,	we	hypoth-
esised that edges should be stronger for nodes (i) that 
are more central to their network and (ii) that individuals 
have encountered more often (i.e., are more familiar with). 

5.2.4

Figure 5.2.3  (A) Consistent across an fMRI study and a pre-registered replication study, we observed that places were deemed more positive 
following episodic simulations. Critically, this pattern was stronger for places that had been the imaginary locations for meetings with liked than 
with disliked people. (B) We used representational similarity analysis (RSA) to examine the hypothesis that the mPFC encodes neural represen-
tations of individual people and places. We thus predicted overall higher pattern similarity for the comparison of an element with the repetition 
of itself (e.g., the same liked person) than for its comparison with different elements of the same category (e.g., other liked people). (C) We ob-
served this predicted pattern of greater similarity for the identical versus different elements irrespective of their nature (people, places) and va-
lence (liked, disliked). (Note that all places were initially neutral and only paired with liked versus disliked people.) The activation pattern in mPFC 
thus carries information about individual personally known people and places. (D) Activation in the same region during the integrative simula-
tions of the respective people at their paired places predicts the change in attitude towards the places, even when controlling for the liking of the 
person. For display purposes exploratory whole-brain maps are thresholded at p < 0.005, uncorrected, with a cluster extent of at least 15 voxels.
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B Repeated simulations of the same people and places
elicit replicable activation patterns in mPFC and PCC
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Figure 5.2.4  (A) Participants arranged tokens labeled with the names of personally familiar elements (i.e., people and places) to indicate as-
sociations between the elements (allowing us to derive each element’s centrality to the network), their familiarity (as a measure of experience), 
and their liking (as a measure of affective value). Separately for people and places, we extracted a principal component (PC) that indeed corre-
lated with each of these measures. We thus take the PC to quantify the overall importance of the individual elements to the affective schematic 
representation. (B) Using representational similarity analysis, we demonstrate that representations in the mPFC are more similar whenever an 
identical element is simulated as compared to when different elements of the same category are simulated. We take this to suggest that mPFC 
encodes	the	nodes	of	affective	schemas.	(C)	Using	a	region	of	interest	approach,	we	then	examine	the	structure	of	the	graph.	Specifi	cally,	we	
predicted that nodes should exhibit overall stronger edges that are more important to the affective schema (as indexed by the PC). Indeed, 
representations in the mPFC, but also in the posterior cingulate cortex (PCC) align with the predicted structure of affective schematic represen-
tations. (D) Results of a linear mixed model comparison support the hypothesis: the structure of representations in the mPFC - but not in the 
PCC	-	is	best	explained	by	the	predicted	structure	of	affective	schematic	representations	(lower	values	indicate	better	fi	t,	relative	LER	difference	
> 2 - marked by red dotted line - regarded as decisive). * p < .05, *** p < .001. 

Given the mPFC’s role in valuation, we further predicted 
(iii) stronger edges for nodes with higher affective value. 
We thus hypothesised that the mPFC encodes affective 
schematic representations. 
Participants provided names of personally familiar peo-
ple and places, and indicated their centrality, familiarity, 
and affective value (Fig. 5.2.4A). A principal component 
analysis	 confi	rmed	 that	 these	 variables	 load	on	 a	 com-
mon	 factor.	This	 factor	 quantifi	es	 the	 importance	of	 in-
dividual nodes to their schema. If the mPFC encodes af-

fective schemas, we predicted that the importance values 
explain the strength of the edges. While being scanned 
with fMRI, participants repeatedly imagined episodes 
with each person and place, thus reinstating their neural 
representations. Using representational similarity analysis, 
we demonstrate that the mPFC codes for the nodes of the 
graph (Fig. 5.2.4B). Critically, the strength of their edges is 
indeed best accounted for by the importance of the indi-
vidual nodes (Fig. 5.2.4C-D). We thus provide evidence that 
the mPFC encodes affective schematic representations. 
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Congresses, Workshops, and Symposia
2019

 � Benoit, R. G., & Paulus, P. C. (June). Structured 
Representations in the Human Brain, Organizers of the 
symposium. Annual meeting of the “Biological Psychology 
and Neuropsychology” section of the German Psychological 
Society, Dresden, Germany.

 � Paulus, P. C. (June). Introduction to Psychophysiological 
Modelling. Workshop. International Max Planck Research 
School NeuroCom, Leipzig, Germany.

2018
 � Benoit, R. G. (May). Voluntary forgetting: basic mechanisms 

and impact on emotions and mental health, Organizer of the 
symposium. Annual meeting of the “Biological Psychology 
and Neuropsychology” section of the German Psychological 
Society, Gießen, Germany.

 � Dabas, A., Meyer, A.-K., Renz, P. (April). Dem Gedächtnis auf 
der Spur. Workshop for Girls Day. Max Planck Institute for 
Human Cognitive and Brain Sciences, Leipzig, Germany.

 � Paulus, P. C. (May). Introduction to Psychophysiological 
Modelling. Workshop. Young researchers of the unit of 
“Biological Psychology and Neuropsychology” of the German 
Society for Psychology (DGPs), Gießen, Germany.

Awards
2019

 � Meyer, A.-K. Poster Award DGPs. Annual meeting of the 
“Biological Psychology and Neuropsychology” section of the 
German Psychological Society, Dresden, Germany.

2018
 � Benoit, R. G. elected into the Memory Disorders Research 

Society (MDRS).
 � Meyer, A.-K. Poster Award IMPRS NeuroCom. 8th IMPRS 

NeuroCom Summer School, Leipzig, Germany.

 � Paulus, P. C. Poster Award DGPs. Annual meeting of the 
“Biological Psychology and Neuropsychology” section of the 
German Psychological Society, Gießen, Germany.

2017
 � Berkers, R. Memrise Prize. An applied science prize for de-

signing the best method to learn words. Memrise, London, 
UK.

 � Meyer, A.-K. Poster Award IMPRS NeuroCom. 7th IMPRS 
NeuroCom Summer School, London, UK.

 � Paulus, P. C. Experimental design prize. Prize in the experi-
mental design competition at the 7th IMPRS NeuroCom 
Summer School, London, UK.

Publications
Journal Articles

Benoit, R. G., Berkers, R., & Paulus, P. C. (2018). An adap-
tive function of mental time travel: Motivating farsighted de-
cisions. Behavioral and Brain Sciences, 41: e3. doi:10.1017/
S0140525X1700125X.

Benoit, R. G., Paulus, P. C., & Schacter, D. L. (2019). Forming 
attitudes via neural activity supporting affective episodic simu-
lations. Nature Communications, 10: 2215. doi:10.1038/s41467-
019-09961-w.

Berkers, R., Ekman, M., van Dongen, E. V., Takashima, A., Barth, 
M., Paller, K. A., & Fernández, G. (2018). Cued reactivation during 
slow-wave sleep induces brain connectivity changes related to 
memory stabilization. Scientific Reports, 8: 16958. doi:10.1038/
s41598-018-35287-6.

Berkers, R., van der Linden, M., de Almeida, R. F., Müller, N. C. 
J., Bovy, L., Dresler, M., Morris, R. G. M., & Fernandez, G. (2017). 
Transient medial prefrontal perturbation reduces false memory 
formation. Cortex, 88, 42-52. doi:10.1016/j.cortex.2016.12.015.

Campbell, K. L., Benoit, R. G., & Schacter, D. L. (2017). Priming, 
not inhibition, of related concepts during future imagining. 
Memory, 25(9), 1235-1245. doi:10.1080/09658211.2017.12834
20.

Campbell, K. L., Madore, K. P., Benoit, R. G., Thakral, P. P., & 
Schacter, D. L. (2018). Increased hippocampus to ventromedial 
prefrontal connectivity during the construction of episodic future 
events. Hippocampus, 28(2), 76-80. doi:10.1002/hipo.22812.
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Schacter, D. L., Benoit, R. G., & Szpunar, K. K. (2017). 
Episodic future thinking: Mechanisms and functions. Current 
Opinion in Behavioral Sciences, 17, 41-50. doi:10.1016/j.cobe-
ha.2017.06.002.

Stramaccia, D., Penolazzi, B., Altoè, G., & Galfano, G. (2017). 
TDCS over the right inferior frontal gyrus disrupts control 
of interference in memory: A retrieval-induced forgetting 
study. Neurobiology of Learning and Memory, 144, 114-130. 
doi:10.1016/j.nlm.2017.07.005.

Thakral, P. P., Benoit, R. G., & Schacter, D. L. (2017). Imagining 
the future: The core episodic simulation network dissociates as a 
function of timecourse and the amount of simulated information. 
Cortex, 90, 12-30. doi:10.1016/j.cortex.2017.02.005.

Thakral, P. P., Benoit, R. G., & Schacter, D. L. (2017). 
Characterizing the role of the hippocampus during episodic 
simulation and encoding. Hippocampus, 27(12), 1275-1284. 
doi:10.1002/hipo.22796.

All preprints are listed as “working papers” on the group’s website at https://tinyurl.com/umox86s. 
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Pain is an important warning signal of impending or ac-
tual tissue damage, yet in its chronic form it is also a 
source of immense suffering. Importantly, the perception 
of pain is not a direct reflection of the strength of peripher-
ally received noxious input but is strongly modulated by a 
plethora of contextual factors, such as our current expec-
tations or our past experience of pain. This argues for a 
significant	 involvement	of	the	central	nervous	system	in	
the construction of the experience of pain.

Accordingly, research in the Pain Perception group is 
based on the general perspective that perception is not a 
passively arising response to sensory stimuli, but an ac-
tive inferential process, in which the central nervous sys-
tem generates predictions about the inputs it receives and 
adjusts these predictions in light of new sensory input. 

Our research agenda focusses on identifying the neural 
building blocks involved in this process. Toward this end, 
we use behavioural recordings in combination with ad-
vanced neuroimaging methods at all levels of the nervous 
system. A special focus is placed on the spinal cord, in or-
der to capture predictive signals of pain processing at the 
earliest level of the central nervous system, since they are 
likely to exert a profound effect on processing at higher 
levels and on the ensuing perceptual experience.

Currently we approach this topic from at least three an-
gles. First, we aim to optimise the acquisition of fMRI 
data to allow for reliable insights into spinal cord process-
ing	(5.3.1).	Second,	we	seek	to	characterise	pain-specific	
prediction signals in the spinal cord and their behavioural 
consequences (5.3.2). Third, we are investigating whether 
it is possible to directly assess spinal cord neuronal pro-
cessing with non-invasive electrophysiological methods 
(5.3.3).

5.3 
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Automated slice-specifi c z-shimming for fMRI of the human spinal cord
 Kaptan, M. 1,  Vannesjo, J.  2,  Mildner, T. 1,   Weiskopf, N. 1,  Finsterbusch, J. 3, &  Eippert, F. 1 
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany;
2 Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Switzerland
3 Department of Systems Neuroscience, University-Medical-Centre Hamburg-Eppendorf, Germany

Imaging the human spinal cord comes with many chal-
lenges, such as the cord’s small cross-sectional diameter, 
the prominent influence of physiological noise, and pe-
riodically occurring signal drop-out. In this work, we ad-
dress	the	latter	point,	which	is	due	to	magnetic	fi	eld	inho-
mogeneities caused by the repeated occurrence of tissue 
types with different magnetic susceptibility. 
We have previously demonstrated that susceptibility-
induced signal drop-out can be largely compensated for 
using	slice-specifi	c	z-shimming	(i.e.	the	slice-specifi	c	ap-
plication of a gradient pulse that aims to compensate 
through-slice signal dephasing; Finsterbusch et al., 2012, 
Neuroimage 59: 2307-2315). However, this approach 
comes with the practical draw-backs that it based on 
subjective assessment, needs experience-based manual/
visual estimation, and is time-consuming. Here, our aim 
was to improve this approach by developing an automat-
ed	slice-specifi	c	z-shim	procedure.	We	implemented	this	
via a quick and robust automated analysis of a z-shim ref-
erence scan (which consists of pre-experimental acquisi-
tions	with	different	z-shims)	that	resulted	in	slice-specifi	c	
z-shim values, which were then fed back into the fMRI 
protocol.

In a group-study (N=24) we were able to replicate previ-
ously observed effects: using a manually determined z-
shim, we recovered large parts of the signal (Fig. 5.3.1A,B) 
and	this	 lead	to	a	67%	reduction	 in	signal	variation	over	
slices	 as	 well	 as	 a	 14%	 increase	 in	 signal	 intensity.	
Crucially, we achieved nearly identical performance us-
ing our automated approach (reduction in signal variation 
of	64%,	increase	in	signal	intensity	of	14%)	and	this	held	
for slices that were either partially or completely affected 
by signal drop-out (Fig. 5.3.1C). A similar effect was also 
observed in time-series data (i.e. temporal signal-to-noise 
ratio),	directly	highlighting	the	benefi	t	for	fMRI	studies.
This work demonstrates that it is possible to carry out 
slice-specifi	c	z-shimming	in	an	automated	manner	with-
out a performance penalty. This advancement will be im-
portant to make spinal fMRI more widely applicable, as it 
obviates the need for experience in judging image quality 
in order to obtain z-shims. It will also open the door for 
longitudinal studies, where z-shims have to be reliably cal-
culated on each scanning day. In ongoing work, we are ex-
ploring an alternative approach to automatisation, by cal-
culating	z-shims	from	a	concurrently	acquired	fi	eld-map,	
which would provide a more general platform for obtain-
ing a complete set of x-, y- and z-shims. 

5.3.1

Figure 5.3.1  (A) Mid-sagittal slices through group-averaged EPIs of the spinal cord (vertebrae C2 to T1 in standard space) with either no z-shim 
correction (red), z-shim correction based on manual selection (blue) or z-shim correction based on automatic selection (green). The black out-
lines depict the borders of the spinal cord, with the dorsal aspect of the spinal cord being on the left; S: superior, I: inferior. (B) Signal intensity 
values extracted from each slice of the spinal cord and averaged across the group (error band represents standard error). Note the strongly 
reduced variation in signal intensity across slices with both z-shim correction methods and their almost identical performance, i.e. the strong re-
covery of signal drop-out present in the data with no z-shim correction. This pattern can also be seen in the sagittal EPI images in panel A where 
the uncorrected data (red) show several areas with reduced signal intensity (see arrows), which is much less pronounced in the corrected data 
(blue and green). (C) Exemplary transversal slices (dorsal aspect of the spinal cord faces the bottom) showing signal drop-out only in the dorsal 
part of the spinal cord (left column) or in the entire spinal cord (right column); both cases are handled well by the two correction approaches.
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Prediction and prediction error signals in pain processing
 Horn, U.  1, &  Eippert, F.  1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 

The perception of pain is not always a direct reflection 
of the strength of peripheral input, but can be strongly 
modifi	ed	 by	 contextual	 factors,	 such	 as	 expectations.	
According to recent thought and experimental evidence 
(Büchel et al., 2014, Neuron 81:1223-1239; Geuter et al., 
2017, eLife 6:e24770) such effects can be readily ex-
plained by predictive coding models. These suggest that 
perception is a dynamic process composed of the predic-
tions our nervous system creates concerning future sen-
sory input, and the mismatch between those predictions 
and the actual input (i.e. prediction errors). In this project, 
we aimed at developing a robust paradigm that would al-
low	for	a	temporal	dissociation	of	pain-specifi	c	prediction	
and prediction error signals. This would enable us to test 
whether these two parameters are represented in the hu-
man spinal cord, the earliest station of central nervous 
system pain processing.
In two experiments (each: N=24) we used a probabilistic 
heat-pain paradigm that allowed us to vary the predictive 
information and nociceptive input on a trial-by-trial basis, 
while concurrently recording skin conductance and pupil 
dilation responses. The experiments differed in two as-
pects: while study 1 was a direct replication of the work 

of Geuter and colleagues (2017), study 2 used a longer in-
terval for the presentation of the predictive visual cues (to 
allow for a temporal evolution of prediction signals) and 
also contained trial-by-trial pain ratings (in order to assess 
effects on the subjective level).
As expected, we observed that the type of stimulation 
(painful vs non-painful) had a strong effect on autonomic 
responses (Fig. 5.3.2.A), as well as on pain ratings, with 
higher responses for painful stimulation. We also ob-
served an additive effect of cue (high probability of pain vs 
low probability of pain), with higher autonomic responses 
for stimuli that had been preceded by the ‘high probability 
of pain’ cue (Fig. 5.3.2B). This effect was also present in 
pain ratings. Importantly, we were able to isolate this cue 
effect in Study 2, where it was evident before the start of 
thermal stimulation (insets in Fig. 5.3.2.B). Contrary to our 
expectations,	we	were	not	able	 to	fi	nd	any	evidence	 for	
prediction error signals (i.e. stronger responses to unex-
pected vs expected painful stimuli) in autonomic or sub-
jective responses, thus failing to replicate the results from 
Geuter and colleagues (2017). 
In ongoing work, we are following up on the role of two 
factors that may have led to our replication attempts be-

5.3.2

Figure 5.3.2  Skin conductance and pupil dilation results for study 1, which was a direct replication of Geuter and colleagues’ study (2017) (A), 
and	study	2,	where	the	paradigm	was	modifi	ed	to	include	a	longer	cue-interval	(B).	In	both	studies,	visual	cues	were	presented	from	trial	onset	
(vertical black bar) until the end of thermal stimulation (stimulation duration is represented by the grey rectangle). The interval between trial 
onset and thermal stimulation onset was either short (0.3s, study 1) or long (5s, study 2), with the latter allowing us to look at cue-induced 
prediction signals in isolation (see dashed insets for results). Both experiments were based on a 2-factorial design with factors stimulation 
(non-painful or painful heat) and cue-type (visual stimuli signalling the following probabilities of receiving painful / non-painful heat: low [25/75], 
medium [50/50], high [75/25]). In all line-plots the solid lines depict the group average and the error-bands depict the standard error.
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ing unsuccessful: the amount of attention allocated to the 
painful stimuli, as well as the strength of noxious input. 
Upon successful completion of this work, we will be us-
ing	the	resulting	paradigm	in	combination	with	high-fi	eld	

(7T) fMRI in order to identify prediction and prediction er-
ror signals in the spinal cord and assess their contribution 
to pain behaviour.

Somatosensory evoked potentials in the human spinal cord
 Nierula, B.  1,  Stephani, T.  1,  Kaptan, M. 1,  Mouraux, A.  2,  Maess, B. 1,  Curio, G. 3,  Nikulin, V. V. 1,  4, &  Eippert, F. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
3 Department of Neurology, Charité University Medicine, Berlin, Germany
4 Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia

Assessing the processing of painful stimuli in the human 
spinal cord is currently only possible via indirect means. 
One either relies on behavioural read-outs (such as noci-
ceptive reflexes) or acquires hemodynamic signals from 
the spinal cord with fMRI. While both approaches provide 
valuable insights, a direct and non-invasive electrophysi-
ological measure of spinal cord nociceptive processing 
would	arguably	be	desirable.	Here,	we	take	a	fi	rst	step	in	
this direction by developing a robust recording and analy-
sis approach for the human spinal cord, using well-estab-
lished somatosensory evoked potentials (SEPs; Cruccu et 

al., 2008, Clinical Neurophysiology 119:1705-1719) as a 
test bed. 
In a group study (N=36), we separately stimulated the me-
dian and tibial nerves with non-painful electrical impulses 
and – using surface electrodes – recorded the ensuing re-
sponses from the cervical and lumbar spinal cord, as well 
as peripheral nerves and the brain (Fig. 5.3.3A). In contrast 
to previous investigations of spinal cord SEPs, we used 
i) an adequately powered sample, ii) non-sedated partici-
pants, iii) a high electrode-density for spinal recordings, 
and iv) techniques for removal of physiological noise. 

5.3.3

Figure 5.3.3  (A) Stimulation and recording set-up. The median and tibial nerves were stimulated at the left wrist and ankle, respectively (yellow 
rectangles). SEPs were recorded from the brain (64 electrodes; upper rectangle), the cervical spinal cord (18 electrodes; middle rectangle), the 
lumbar spinal cord (18 electrodes; lower rectangle) and the peripheral nerves (rectangles at biceps and knee). (B) & (C) SEPs to median and tibial 
nerve stimulation. Top row: early cortical SEPs to median (N20 at electrode CP4, 19ms, -1.3µV) and tibial nerve stimulation (P39 at electrode 
Cz, 40ms, 1.5µV) as well as corresponding isopotential maps. Middle row: spinal SEPs to median (N13 at electrode over 6th cervical vertebra, 
14ms, -1.1µV) and tibial nerve stimulation (N22 at electrode over 1st lumbar vertebra, 23ms, -0.5µV), as well as the corresponding isopotential 
maps. Bottom row: compound nerve action potentials to median (N6 at biceps electrode, 6ms, -3.1µV) and tibial nerve stimulation (N8 at knee 
electrode, 9ms, -1.3µV). The large signal around 0ms and the following ramp is an artefact of the electrical stimulation. In all line plots black 
lines represent the group-averaged response and grey error bands represent the standard error. The scale for all isopotential maps is identical 
and the data come from a 2ms-window around the peak.
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Outside	 of	 the	 spinal	 cord	 (first	 and	 third	 row	 of	 Fig.	
5.3.3B,C), we observed early cortical SEPs with the ex-
pected latency and topography to median and tibial nerve 
stimulation (N20 and P39, respectively; both over primary 
somatosensory cortex), as well as compound action po-
tentials in the peripheral nerves (N6 at the biceps and N8 
at the back of the knee, respectively). In the spinal cord, 
we observed SEPs to median nerve stimulation at the 
cervical level (N13 recorded over the 6th cervical vertebra: 
14ms, -1.1µV; Fig 5.3.3B) and SEPs to tibial nerve stimula-
tion at the lumbar level (N22 recorded over the 1st lumbar 
vertebra: 23ms, -0.5µV; Fig. 5.3.3C). The robustness of 
these responses was established by an odd-even split of 
the data as well as a replication study. The N13 was maxi-

mally expressed over vertebra C4/C5, whereas the N22 
had its peak over vertebra L1/L2. In ongoing work, we are 
aiming to obtain single-trial SEPs (via multivariate tech-
niques) that will also allow us to probe for correlations 
across levels of the nervous system. 
As a whole, this study demonstrates that it is possible to 
record electrophysiological responses to somatosensory 
stimulation not only in the human brain, but also in the 
spinal cord with a considerable level of robustness and 
topographical	specificity.	Our	next	project	will	extend	this	
approach to investigate electrophysiological responses to 
natural painful stimuli, which so far have not been record-
ed in the human spinal cord. 
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Congresses, Workshops, and Symposia
2019

 � Nierula, B. (May) CBS Open Science Day. Symposium. Max 
Planck Institute for Human Cognitive and Brain Sciences, 
Leipzig, Germany.

 � Eippert, F., Horn, U., Kaptan, M., & Nierula, B. (June) Pain 
Perception Workshop – 9th IMPRS NeuroCom Summer 
School, Leipzig, Germany.

Awards
2018

 � Eippert, F. ERC Starting Grant. European Research Council 
(ERC), Brussels, Belgium.

 � Kaptan, M. Mind and Brain Travel Award, Humboldt University 
Berlin, Germany. 

 � Nierula, B. Young Scientist Award. Mind Brain Body 
Symposium, Berlin, Germany.

Appointments
2018

 � Eippert, F. Faculty member of the International Max Planck 
Research School on Neuroscience of Communication: 
Function, Structure, and Plasticity (IMPRS NeuroCom). Max 
Planck Institute for Human Cognitive and Brains Sciences, 
Leipzig, Germany.

 � Eippert, F. Max Planck Research Group Leader (W2), Max 
Planck Society, Germany.

Publications
(spanning reporting period, but published prior to joining MPI CBS)

Journal Articles
Eippert, F., Kong, Y., Jenkinson, M., Tracey, I., & Brooks, J. C. W. 

(2017). Denoising spinal cord fMRI data: Approaches to acquisi-
tion and analysis. NeuroImage, 154, 255-266. doi:10.1016/j.neu-
roimage.2016.09.065.

Eippert, F., Kong, Y., Winkler, A. M., Andersson, J. L., 
Finsterbusch, J., Büchel, C., Brooks, J. C. W., & Tracey, I. (2017). 
Investigating resting-state functional connectivity in the cervical 
spinal cord at 3 T. NeuroImage, 147, 589-601. doi:10.1016/j.neu-
roimage.2016.12.072.

Geuter, S., Boll, S., Eippert, F., & Büchel, C. (2017). Functional 
dissociation of stimulus intensity encoding and predictive coding 
of pain in the insula. eLife, 6: e24770. doi:10.7554/eLife.24770.

Tseng, M.-T., Kong, Y., Eippert, F., & Tracey, I. (2017). Determining 
the neural substrate for encoding a memory of human pain and 
the influence of anxiety. The Journal of Neuroscience, 37(49), 
11806-11817. doi:10.1523/JNEUROSCI.0750-17.2017.

Zunhammer, M., Bingel, U., Wager, T. D., Placebo Imaging 
Consortium, Atlas, L., Benedetti, F., Büchel, C., Choi, J. C., Colloca, 
L., Duzzi, D., Eippert, F., Ellingsen, D.-M., Elsenbruch, S., Geuter, 
S., Gollub, R., Kaptchuk, T. J., Kessner, S. S., Kirsch, I., Kong, J., 
Lamm, C., Leknes, S., Müllner-Huber, A., Lui, F., Porro, C. A., Rütgen, 
M., Schenk, L., Schmid, J., Theysohn, N., Tracey, I., Wrobel, N., & 
Zeidan, F. (2018). Placebo effects on the neurologic pain signa-
ture: A meta-analysis of individual participant functional magnet-
ic resonance imaging data. JAMA Neurology, 75(11), 1321-1330. 
doi:10.1001/jamaneurol.2018.2017.
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Lise Meitner Research Group 
“Cognition and Plasticity”

Cognitive functions are organised in distributed neural 
networks in the human brain. Flexible interaction within 
and between different networks is enabled by neural plas-
ticity, key mechanisms that shape brain function through-
out life and allow for lifelong learning and adaptation. 
However, it is not clear how the brain adapts to neuronal 
challenges. The central aim of our research is to identify 
generic principles of adaptive plasticity, in the neural net-
works underlying higher cognitive functions, across the 
adult	 lifespan.	Specifi	cally,	our	work	 looks	at	 the	 role	of	
neural plasticity during novel cognitive skill acquisition, as 
an adaptive mechanism for cognitive challenges, in coun-
teracting cognitive decline, and in functional compensa-
tion following brain injury. Our overarching hypothesis is 
that neural networks for cognition can rapidly change the 

functional weight of participating nodes, enabling flexible 
compensation after disruption (Hartwigsen, 2018, Trends 
in Cogn Sci; see Fig. 5.4.). Our research programme has 
the	following	specifi	c	goals	that	are	exemplifi	ed	in	fi	ve	ab-
stracts:	i)	to	identify	key	neural	networks	for	specifi	c	cog-
nitive functions and their interactions (5.4.1, 5.4.2); ii) to 
probe the relevance and specialisation of key nodes for 
different cognitive functions (5.4.3); iii) to modulate the 
consolidation of new skills (5.4.4); and iv) to map plastic-
ity-related after-effects of neurostimulation at the neuro-
physiological and neural network level (5.4.5). A better un-
derstanding of these processes will help pave the way for 
a valid model of adaptive plasticity in neural networks for 
cognition and future enhancement of recovery after brain 
injury, such as stroke.  

5.4 

Figure	5.4.		A	model	of	flexible	compensation	in	cognitive	networks.	A	(virtual)	lesion	to	a	neural	key	region	for	a	specifi	c	cognitive	function	may	
decrease	the	contribution	of	the	specifi	c	network.	The	brain	may	compensate	for	the	disruption	by	recruiting	alternative	networks,	including	
neighboring	networks	for	other	specifi	c	functions	or	domain-general	networks.
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Task-dependent recruitment of modality-specifi c and multimodal regions 
during conceptual processing
 Kuhnke, P. 1,  Kiefer, M. 2, &  Hartwigsen, G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 
2 Department of Psychiatry, Ulm University, Germany

Conceptual knowledge is crucial for many cognitive abil-
ities such as word comprehension. Previous evidence in-
dicates that concepts are, at least in part, composed of 
perceptual and motor features that are represented in mo-
dality-specifi	c	brain	regions.	However,	it	is	unclear	to	what	
extent the retrieval of perceptual-motor features and the 
resulting	recruitment	of	modality-specifi	c	regions	depend	
on the task. To address this issue, we measured brain ac-
tivity in forty healthy participants using fMRI while they 
performed three different tasks—lexical decision, sound 
and action judgment—on words that independently varied 
in their association with sounds or actions. Neural activity 

for sound or action features was found in modality-spe-
cifi	c	auditory	or	motor-related	brain	regions,	respectively,	
only when they were task-relevant (Fig. 5.4.1.1). Activity 
in higher-level, multimodal regions was observed during 
both sound and action feature retrieval (Fig. 5.4.1.2). 
These	fi	ndings	provide	strong	evidence	for	a	task	depen-
dency of conceptual feature retrieval and recruitment of 
modality-specifi	c	 brain	 regions.	 Crucially,	 we	 show	 fi	rst	
evidence	 that	 not	 only	modality-specifi	c,	 but	 also	multi-
modal regions are engaged in conceptual processing in a 
flexible, task-dependent fashion, responding selectively to 
task-relevant conceptual features.

5.4.1

Figure 5.4.1.1  (A) Left: Activation overlap (orange) between sound feature retrieval (yellow) and real sound perception (red). Right: Percent 
signal	change	in	subject-specifi	c	functional	regions	of	 interest	(fROIs)	activated	for	both	sound	feature	retrieval	and	real	sound	perception.	
Different	data	were	used	for	fROI	defi	nition	and	response	estimation.	(B)	Left:	Activation	overlap	(purple)	between	action	feature	retrieval	(blue)	
and	movement	execution	(red).	Right:	Percent	signal	change	in	subject-specifi	c	fROIs	engaged	for	both	action	feature	retrieval	and	movement	
execution. IFG = inferior frontal gyrus; IPS = inferior parietal sulcus; aIPS = anterior IPS; pIPS = posterior IPS; LTO = lateral temporal-occipital 
junction; pMTG = posterior middle temporal gyrus; dmPFC = dorsomedial prefrontal cortex; vmPFC = ventromedial prefrontal cortex; PMC = 
premotor cortex; PMv = ventral PMC; SMA = supplementary motor area; aSMG = anterior supramarginal gyrus. All activation maps were thres-
holded at q < 0.05 FDR-corrected (extent > 20 voxels).
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Differential contributions of left-hemispheric language regions to basic 
semantic composition
 Graessner, A. 1,   Zaccarella, E. 1, &  Hartwigsen, G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 

Semantic composition, that is, the ability to combine sin-
gle words to create complex meanings, is a core feature 
of human language. Despite growing interest in the neural 
basis of semantic composition, the neural correlates and 
interactions between semantic-related regions remains a 
matter of debate. In the present fMRI study, we designed 
a two-word paradigm in which phrases only differed along 

the semantic dimension, while keeping syntactic informa-
tion similar. Healthy participants listened to meaningful 
phrases (“fresh apple”), anomalous phrases (“awake ap-
ple”) and pseudoword phrases (“awake gufel”) and per-
formed	a	meaningfulness	 judgement	task.	We	identifi	ed	
distinct neural signatures for two processes during basic 
semantic composition. The more general phrasal com-

5.4.2

Figure 5.4.1.2  Multimodal conceptual regions. Left: Activation overlap (green) between the retrieval of action features (blue) and sound features 
(yellow).	Activation	maps	were	thresholded	at	q	<	0.05	FDR-corrected	(extent	>	20	voxels).	Right:	Percent	signal	change	in	subject-specifi	c	fROIs	
engaged for both action and sound feature retrieval. aIFG = anterior inferior frontal gyrus; pIPL = posterior inferior parietal lobe; pMTG = posterior 
middle temporal gyrus; dmPFC = dorsomedial prefrontal cortex; vmPFC = ventromedial prefrontal cortex.
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Figure 5.4.2.1  (A) Activation overlap of meaningful > pseudowords and anomalous > pseudow-
ords. (B) Activation map for the contrast meaningful > anomalous. All activation maps were 
thresholded at q < 0.05 FDR-corrected. ACC = anterior cingulate cortex, aIFG = anterior inferior 
frontal gyrus, ATL = anterior temporal lobe, DMPFC = dorsomedial prefrontal cortex, pMTG = 
posterior middle temporal gyrus, PGa = angular gyrus anterior division, PGp = angular gyrus 
posterior division, SMG = supramarginal gyrus.

Figure 5.4.2.2  Functional connectiv-
ity (PPI) results with PGp as seed region 
(blue) for the contrast meaningful > pseu-
dowords (thresholded at p < 0.05 FWE-
corrected at the cluster level). aIFG = an-
terior inferior frontal gyrus, preSMA = pre 
supplementary motor area, PGp = angular 
gyrus posterior division.
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position process, which is independent of the plausibility 
of the resulting phrase, engages a wide-spread, left-hem-
ispheric network comprising both executive semantic 
control regions as well as general conceptual representa-
tion regions (Fig. 5.4.2.1A). Effective connectivity results 
further showed that meaningful phrasal composition cru-
cially relies on the interaction of the left anterior inferior 

frontal gyrus and the posterior angular gyrus (Fig. 5.4.2.2). 
Specifi	c	meaningful	 composition,	 on	 the	 other	 hand,	 is	
guided by the anterior angular gyrus (Fig. 5.4.2.1B). We 
show that the angular gyrus may be decomposable into 
two sub-regions for different processes during semantic 
composition.

Dissociating semantic and phonological contributions of the left inferior 
frontal gyrus to language production
 Klaus, J. 1, &  Hartwigsen, G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

While the involvement of the left inferior frontal gyrus 
(IFG) in language production is undisputed, the role of 
specifi	c	 sub-regions	 at	 different	 representational	 levels	
remains unclear. Some studies suggest a division of an-
terior and posterior regions for semantic and phonologi-
cal processing, respectively. Crucially, evidence thus far 
comes only from correlative neuroimaging studies. The 
functional relevance of these sub-regions during a given 
task remains elusive. In this study, we asked 24 native 
German-speaking, right-handed participants to perform a 
rhyme generation task and a category member genera-
tion	 task	 (Fig.	 5.4.3).	On	each	 trial,	 fi	ve	pulses	of	10-Hz	
repetitive transcranial magnetic stimulation (rTMS) were 
applied over anterior or posterior IFG (aIFG/pIFG), or ver-
tex as a control site. We found a functional-anatomical 
double dissociation between tasks and stimulated sub-re-

gions.	Naming	latencies	were	signifi	cantly	delayed	in	the	
semantic task when rTMS was applied to the aIFG (rela-
tive to pIFG and vertex). In contrast, we observed a facili-
tation of naming latencies in the phonological task when 
rTMS was applied to pIFG (relative to aIFG and vertex) 
(Fig.	5.4.3C).	The	results	provide	the	fi	rst	causal	evidence	
for the notion that anterior portions of the IFG are selec-
tively recruited for semantic processing while posterior re-
gions	are	functionally	specifi	c	 for	phonological	process-
ing during word production. Thus, the results shed light 
on the functional parcellation of the left IFG in language 
production. Moreover, the opposing polarity of the effects 
provides	the	fi	rst	hints	of	differential	mechanisms	of	TMS	
relative to the cognitive process at play. We will further 
investigate this question in a follow-up study.  

5.4.3

Figure 5.4.3  (A) Schematic outline of the three-session procedure. Stimulation and task order were counterbalanced across participants. (B) 
Illustration of a trial in the semantic and phonological task, respectively. (C) Naming latencies aggregated across participants, broken down by 
task and stimulation site. 
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Interleaving motor sequence training with high-frequency repetitive 
transcranial magnetic stimulation facilitates motor consolidation
 Rumpf, J.-J. 1,  May, L.,  Fricke, C. 1,  Classen, J. 1, &  Hartwigsen, G. 2
1 Department of Neurology, Leipzig University, Germany
2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The acquisition of novel motor skills is a fundamental life-
long learning process and crucial for successful everyday 
behaviour. Performance gains acquired by training under-
go a transition from an initially labile state to a state that is 
progressively more resistant to interference, a phenome-
non referred to as motor consolidation. Previous work has 

shown that the primary motor cortex (M1) is a key neural 
region for motor consolidation. However, it is not known 
whether physiological processes underlying post-training 
motor consolidation in M1 are already active during train-
ing or only after the completion of training. We examined 
whether 10 Hz interleaved repetitive transcranial magnet-

5.4.4

Figure 5.4.4  Experimental Design. (A) Participants performed a different motor sequence in each of two sessions with their left hand. (B) i-rTMS 
was applied over either the right M1hand area or the vertex in different sessions. (C) During each session, participants performed 30 training 
blocks of an explicit motor sequence learning task with their left hand, interleaved by short rest blocks. Offline consolidation of training-induced 
performance increments was assessed 6 h later with the trained hand, immediately followed by retesting of the mirror-symmetric sequence 
with the untrained hand. (D) Three trains of i-rTMS were applied during the 8-s rest blocks. (E-F) Behavioural results. (E) Task performance. 
Performance Index (PI) measures across blocks of training, delayed retesting of the trained hand, and delayed retesting of the untrained hand. 
Vertical bars represent standard error of the mean (SEM). (F) Consolidation. Columns represent the mean of normalised PI measures across 
the 8 blocks of delayed retesting (retest PI changes relative to the individual end-of-training performance). Bars represent SEM. (*) indicates 
signifi	cant	difference	of	consolidation	following	i-rTMS	directed	to	M1	relative	to	i-rTMS	directed	to	vertex.	
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ic stimulation (i-rTMS) of M1 during rest periods between 
active motor training in an explicit motor learning task af-
fects post-training offline consolidation. We hypothesised 
that stimulation during rest blocks, following active train-
ing, may have effects on motor consolidation that could 
be dissociated from the effects of stimulation on active 
motor training. Twenty-four healthy volunteers underwent 
two sessions of a motor-sequence learning task with i-
rTMS applied to the hand area of M1 or the vertex (con-
trol region). Relative to the vertex, i-rTMS of M1 facilitated 
post-training consolidation assessed 6 hours after train-

ing without affecting training. This facilitatory effect gen-
eralised to delayed performance of the mirror-symmetric 
sequence	with	 the	 untrained	 hand.	 These	 fi	ndings	 indi-
cate that post-training consolidation can be facilitated in-
dependently of training-induced performance increments 
and suggest that consolidation is already initiated during 
offline processing in short rest periods between active 
training phases. These results may have implications for 
our understanding of the mechanisms underlying motor 
consolidation and stimulate novel therapeutic strategies 
in motor rehabilitation.  

10 Hz transcranial alternating current stimulation over the prefrontal 
cortex induces plastic after-effects on phonological word decisions
 Moliadze, V. 1,  Sierau, L. 1,  Lyzhko, E. 1, 2, 3,  Stenner T. 1,  Werchowski, M. 1,  Siniatchkin, M. 1, 4, &  Hartwigsen, G.  5
1 Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Germany
2 Department of Neuropediatrics, University Medical Center Schleswig Holstein, Kiel University, Germany
3 Institute of Mathematical Problems of Biology RAS, Pushchino, Moscow Region, Russia
4 Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, Bielefeld, Germany
5 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Previous studies in the language domain have shown that 
“virtual lesions” of the left or right posterior inferior fron-
tal gyrus impaired phonological decision-making, arguing 

for a causal contribution of these areas to phonological 
processing. However, the neurophysiological correlates 
of these effects are unclear. The present study addressed 

5.4.5

Figure 5.4.5  Experimental Design and Results (A) In three separate sessions, 10 Hz, 16.18 Hz, or sham tACS was applied over the bilateral pre-
frontal cortex. Participants then performed a phonological word decision task and a simple decision making task. (B) Relative to sham tACS, 
10	Hz	tACS	signifi	cantly	facilitated	phonological	response	speed	(given	as	mean	inverse	response	time,	1/s).	(C)	Relative	to	both	control	con-
ditions,	10	Hz	tACS	signifi	cantly	increased	task-related	theta	power	during	phonological	decisions.	(D)	The	tACS-increased	theta	power	was	
signifi	cantly	correlated	with	the	individual	mean	inverse	response	time,	indicating	faster	responses	with	increased	theta	power.	
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the question of whether neural activity in the prefrontal 
cortex could be modulated by 10 Hz transcranial alternat-
ing current stimulation (tACS) and how this would affect 
phonological decisions. In three sessions, 24 healthy par-
ticipants received tACS at 10 Hz, at 16.18 Hz (control fre-
quency), or sham stimulation over the bilateral prefrontal 
cortex. Stimulation occurred before the task. Thereafter, 
participants performed a syllable judgment task while 
EEG was recorded. Relative to sham stimulation, 10 Hz 
tACS	 significantly	 facilitated	 phonological	 response	
speed.	This	effect	was	 task-specific	as	 tACS	did	not	af-
fect a simple decision making task. Moreover, 10 Hz tACS 
significantly	 increased	 theta	 power	 during	 phonological	

decisions. The individual increase in theta power was pos-
itively correlated with the behavioural facilitation after 10 
Hz tACS. The observed phonological facilitation after 10 
Hz tACS might indicate that tACS increased task-related 
activity in the stimulated area to a level that was optimal 
for	phonological	performance.	The	significant	correlation	
with the individual increase in theta power suggests that 
the behavioural facilitation might be related to increased 
theta power, likely indicating increased working memory 
efficiency.	 These	 results	 indicate	 that	 offline	 tACS	 pro-
vides a powerful tool to modulate task-related activity and 
behaviour beyond the period of stimulation.  
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Congresses, Workshops, and Symposia
2019

 � Martin,	S.	(November).	Doing	Good	–	Scientific	Practice	un-
der	Review,	Symposium	on	good	scientific	practice	and	open	
science. Max Planck Institute for Human Cognitive and Brain 
Sciences, Leipzig, Germany.

 � Kuhnke, P., Numssen, O., Rysop, A., & van der Burght, S. 
(June). Hands-on TMS workshop. 9th IMPRS NeuroCom 
Summer School, Leipzig, Germany.

2018 
 � Hartwigsen, G., & Volz, L. J. (March). Neurostimulation: From 

mechanisms to application in stroke. Annual Meeting of the 
German Society for Clinical Neurophysiology and Functional 
Imaging (DGKN), Berlin, Germany. 

2017
 � Hartwigsen, G., & Saur, D. (September). Fascination lan-

guage – neuroanatomy, plasticity, and rehabilitation. Annual 
Meeting of the German Neurological Society (DGN), Leipzig, 
Germany.

 � Bergmann, T. O., & Hartwigsen, G. (June). Transcranial brain 
stimulation in psychology: from neural mechanisms to cog-
nitive function. Annual Meeting of the German Society for 
Psychology, Section Biopsychology and Neuropsychology, 
Trier, Germany.

 � Hartwigsen, G., & Volz, L. J. (March). Non-invasive neuromod-
ulation after stroke – what´s new? Annual Meeting of the 
German Society for Clinical Neurophysiology and Functional 
Imaging (DGKN), Leipzig, Germany.

Appointments
2018

 � Hartwigsen, G. (2018). Lise Meitner Research Group Leader 
(W2), Max Planck Society, Germany.

Awards
2019

 � Hartwigsen,	G.	Top	Five	Scientist	in	the	field	of	Social	
Sciences. USERN Prize. Budapest, Hungary.

 � Hartwigsen, G. Visiting Fellowship. Queensland University of 
Technology, Institute of Health and Biomedical Innovation. 
Brisbane, Australia.

 � Martin, S. First prize in Science Slam at Annual Symposium 
of German Association of Speech-Language Pathology (dbs), 
Halle, Germany.

Publications
(spanning reporting period, published during or prior to group’s commencement, hence partly overlapping with Dept of 
Neuropsychology)

Journal Articles
Baumann, A., Nebel, A., Granert, O., Giehl, K., Wolff, S., Schmidt, 

W., Baasch, C., Schmidt, G., Witt, K., Deuschl, G., Hartwigsen, G., 
Zeuner, K. E., & van Eimeren, T. (2018). Neural correlates of hy-
pokinetic dysarthria and mechanisms of effective voice treat-
ment in Parkinson disease. Neurorehabilitation and Neural Repair, 
32(12), 1055-1066. doi:10.1177/1545968318812726.

Chien, P.-J., Friederici, A.D., Hartwigsen, G* & Sammler D* (in 
press). Neural correlates of intonation and lexical tone in ton-
al and non-tonal language speakers. Human Brain Mapping. 
[*shared senior authorship].

Fiori, V., Kunz, L., Kuhnke, P., Marangolo, P., & Hartwigsen, 
G. (2018). Transcranial direct current stimulation (tDCS) fa-
cilitates verb learning by altering effective connectivity in the 
healthy brain. NeuroImage, 181, 550-559. doi:10.1016/j.neuroim-
age.2018.07.040.

Hartwigsen, G. (2018). Flexible redistribution in cognitive net-
works. Trends in Cognitive Sciences, 22(8), 687-698. doi:10.1016/j.
tics.2018.05.008.

Hartwigsen, G., & Bzdok, D. (2018). Multivariate single-subject 
analysis of short-term reorganization in the language network. 
Cortex, 106, 309-312. doi:10.1016/j.cortex.2018.06.013.
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Hartwigsen, G., Bzdok, D., Klein, M., Wawrzyniak, M., Stockert, 
A., Wrede, K., Classen, J., & Saur, D. (2017). Rapid short-term reor-
ganization in the language network. eLife, 6: e25964. doi:10.7554/
eLife.25964.
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Hartwigsen, G., Neef, N., Camilleri, J., Margulies, D. S., & 
Eickhoff, S. B. (2019). Functional segregation of the right inferi-
or frontal gyrus: Evidence from coactivation-based parcellation. 
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The World Health Organization has declared stress one 
of the major health risks of the 21st century. They predict 
that every second sick call in the year 2020 will be due to 
stress. It is our tendency to mount a stress response for 
psychosocial reasons that leads to chronic stress expo-
sure and stress-related disease in modern society. Stress 
reactivity in the social context and how social factors and 
training techniques can be used to decrease stress reac-
tivity, are important topics of the Social Stress and Family 
Health Research Group.

A central topic that we are currently investigating con-
cerns the interactions of different stress- and health-
related biomarkers. Here we focus both on situations 
of acute challenge and on basal states. We thus gain a 
fundamental understanding of how different adverse and 
protective factors contribute to stress-related vulnerability 
and stress resilience. Above and beyond learning about 
the physiological stress reaction per se, this work informs 
our hypotheses on how mental training interventions may 
reduce stress and improve health and wellbeing. Recent 
work in this context has focused on interactions of cor-
tisol and the brain-derived neurotrophic factor (BDNF; 
5.5.1) and on interactions of leukocyte telomere length 
and cortical thickness (5.5.2).

A second focus of the group lies within the social neu-
roscience of human attachment. In this context we as-
sess the psychological, biological, and brain bases of in-
terpersonal relationships within families. When humans 
communicate, they unconsciously synchronise their be-
haviour, and even their brain and peripheral physiological 
activity. This empathic ability of tuning in to one another 
seems to be an important aspect of successful social in-
teraction and understanding. In studying social interac-
tions between children and parents in a dyadic setting, 
our work examines the role of human attachment in be-
havioural and neural synchronisation (5.5.3).

Data in our group are collected using advanced methods 
of social neuroscience, including functional magnetic res-
onance imaging and functional near-infrared spectrosco-
py. These data are combined with peripheral physiological 
biomarkers such as cortisol, pro-inflammatory cytokines 
and brain-derived neurotrophic factor, self-report ques-
tionnaires, and semi-structured narrative interviews de-
rived from attachment theory.

5.5 
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Acute psychosocial stress increases serum BDNF levels: An antagonistic 
relation to cortisol but no group differences after mental training
Linz, R. 1, Puhlmann, L. M. C. 1, Apostolakou, F. 2, Mantzou, E. 3 Papassotiriou, I. 2, Chrousos, G. P. 4, Engert, V. 1, 5,†, &  
Singer, T. 6,†
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, Athens, Greece
3 First Department of Pediatrics, School of Medicine, University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
4 First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Greece
5 Institute of Psychosocial Medicine and Psychotherapy, Jena University Hospital, Friedrich-Schiller-University Jena, Germany
6 Social Neuroscience Lab, Max Planck Society, Berlin, Germany
† Joint last authors

Brain-derived neurotrophic factor (BDNF) facilitates neu-
ronal plasticity and can thus counteract the adverse ef-
fects of excessive cortisol signaling on neuronal integrity. 
While this long-term antagonism of BDNF and cortisol is 
well documented during chronic stress, here we investi-
gated their relationship during an acute laboratory stress 
paradigm (the Trier Social Stess Test, TSST) in a large 
sample of 301 healthy participants.
We show that BDNF is stress-reactive, characterised by 
a	significant	 increase	 in	serum	BDNF	 levels	 in	 response	
to	 the	 TSST,	 and	 a	 significant	 decline	 after	 a	 recovery	
phase (Figure 5.5.1 A). Our results indicate an antagonis-
tic association of BDNF and cortisol during acute stress. 
Specifically,	higher	BDNF	peaks	after	stress	were	associ-
ated with a faster cortisol recovery while a higher increase 

in cortisol after stress was associated with a faster de-
crease in BDNF (Figure 5.5.1B). Mental training did not 
modulate the found alterations.
This work demonstrates in a large healthy adult popula-
tion that serum BDNF levels are stress-sensitive. It also 
provides novel evidence for the dynamic short-term inter-
action of BDNF and cortisol, which is consistent with the 
proposed long-term antagonism of the two agents. These 
findings	contribute	to	our	understanding	of	how	stress	re-
sponses, mediated by both cortisol and BDNF, may turn 
from adaptive to pathologic. Moreover, they highlight the 
critical need to explore involved molecular mechanisms in 
order	to	obviate	stress	chronification	and	its	consequen-
tial health risks. 

5.5.1

Figure	5.5.1		(A)	Brain-derived	neurotrophic	factor	(BDNF)	measures	(ln)	collected	at	−50 min	(baseline),	+15 min	(post-stress)	and	+60 min	(re-
covery)	relative	to	Trier	Social	Stress	Test	(TSST)	onset	at	0 min.	(B)	Higher	serum	BDNF	levels	at	post-stress	(+20	min)	were	associated	with	
a steeper cortisol recovery (p < .001).
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Association of short-term change in leukocyte telomere length with 
cortical thickness and outcomes of mental training among healthy adults. 
A randomised clinical trial
 Puhlmann, L. M. C. 1,  Valk, S. L. 2, 3,   Engert, V. 1, 4,  Bernhardt, B. C. 5,  Lin, J. 6,   Epel, E. S. 7,  Vrtička,	P. 1,†, &  Singer, T. 8,†
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
3 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
4 Institute of Psychosocial Medicine and Psychotherapy, Jena University Hospital, Friedrich-Schiller-University Jena, Germany
5 Montreal Neurological Institute, McGill University, Montreal, Canada
6 Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, US
7 Department of Psychiatry, University of California, San Francisco, USA
8 Social Neuroscience Lab, Max Planck Society, Berlin, Germany
† Joint last authors

The length of telomeres, i.e. protective chromosomal 
caps, is associated with the development of age-related 
diseases and structural differences in multiple brain re-
gions (King et al., 2014, JAMA Neurology 71:1247-1254). 
It remains unclear, however, whether change in telomere 
length is also linked to brain structure change. In this 
study,	we	fi	rst	investigated	whether	there	is	evidence	for	
such a dynamic association between leukocyte telomere 
length (LTL) and cortical thickness (CT). Second, we ex-
amined whether LTL is affected by a longitudinal contem-
plative mental training intervention. Mindfulness-based 
mental training has been found to reduce several psycho-
logical strains that are associated with shorter telomer-
es, including loneliness and stress (e.g. Epel et al., 2004, 
PNAS	101:17312-17315).	As	a	fi	nal	analysis,	we	planned	
to assess whether potential training-related changes in 
LTL	are	mirrored	by	CT	change	in	the	regions	identifi	ed	in	
our	fi	rst	analysis.	LTL	and	CT	were	measured	four	times	
over nine months as part of the ReSource Project (Singer 
et al., 2016, Max Planck Institute for Human Cognitive and 
Brain Sciences). Training cohort participants completed 
three modules cultivating interoception and attention and 
interoception (Presence module), compassion (Affect 
module), or perspective taking (Perspective module) 
(Figure 5.5.2A). 

Our	fi	rst	research	question	was	tested	in	a	retest	control	
cohort who underwent all testing but no training. In this 
subsample, naturally occurring LTL change was related to 
CT change in the left precuneus extending to the poste-
rior cingulate cortex (Figure 5.5.2B). Telomere shortening 
was related to cortical thinning and telomere lengthening 
to cortical thickening. The training had no effect on LTL 
(Figure	5.5.2C).	The	fi	ndings	of	this	trial	indicate	an	asso-
ciation between short-term change in LTL and concomi-
tant change in plasticity of the left precuneus extending 
to the posterior cingulate cortex. This result contributes 
to the evidence that LTL changes more dynamically on the 

individual level than previously thought. No effect of con-
templative mental training was noted in what may be, to 
date, the longest intervention with healthy adults.

5.5.2
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Figure 5.5.2.  (A), Study design of the ReSource Project. (B), Positive 
association between change in leukocyte telomere length and change 
in cortical thickness of the left precuneus/posterior cingulate cortex 
(mean t161 = 3.22;	P < .001;	r = 0.246).	(C),	Model-estimated	change	in	
leukocyte telomere length by training module, error bars representing 
95%	CIs.
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Inter-brain synchrony in mother-child dyads during cooperation: 
An fNIRS hyperscanning study
 Miller, J. 1,†,  Vrtička,	P. 2,†,  Cui, X. 1,  Shrestha, S. 1,  Hosseini, H. 1,  Baker, J. 1, &  Reiss, A. 1, 3
1 Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School 

of Medicine, Stanford University, United States
2 Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
3 Department of Radiology, School of Medicine, Stanford University, United States
†	Joint	fi	rst	authors

During or shortly after social interaction, increased bio-be-
havioural synchrony can be observed on several levels of 
the human organism (behaviour, physiology, endocrinol-
ogy, and brain activity). Bio-behavioural synchrony seems 
to be strongest for social interactions between close and 
intimate interaction partners, particularly within parent-
child dyads. We hypothesised, however, that bio-behav-

ioural synchrony and especially inter-brain coherence in 
parent-child dyads would depend on inter-individual dif-
ferences in relationship quality. To investigate such asso-
ciation, we relied upon the comprehensive psychological 
framework of attachment theory and predicted that more 
secure mother-child dyads would display higher inter-
brain coherence during social interaction.

5.5.3

Figure 5.5.3  (A) fNIRS optodes and regions of interest. The estimated average location of source (red circles) and detector (blue circles) optodes 
based on 3D digitizer data and plotted in MNI space. Regions of interest (ROIs) were established a priori for the right inferior (yellow triangle), 
right dorsolateral (red triangle), right superior (green triangle), and right frontopolar prefrontal cortex (purple triangle), as well as right temporo-
parietal cortex (blue rectangle). (B) Left panel: experimental setup (depicted is an identical setup in an adult-adult dyad due to data protection 
issues – taken from Xu et al., 2012); right panel: trial stimulus sequence, screenshots of the ready signal, “go” signal to initiate mother and child 
response, and feedback window. (C) Left panel: overall inter-brain coherence during cooperative versus independent button presses (F(1, 27) = 
7.47,	p=	.011,	partial	η2=	.22);	right	panel:	overall	inter-brain	coherence	split	into	the	fi	ve	a	priori	ROIs,	with	signifi	cant	(uncorrected)	effects	in	the	
dorsolateral (t(27) = 2.15, p= .041, pFDR= .103, red) and right frontopolar prefrontal cortex (t(27) = 2.62, p= .014 pFDR=	.070,	purple).	(D)	Signifi	cant	
gender-effect	(F(1,	25)	=	7.57,	p=	.010,	partial	η2= .24) in overall inter-brain coherence, driven by differential coherence in mother-son dyads only. 
(E) Negative association between right frontopolar prefrontal cortex inter-brain coherence increase during cooperative (versus independent) 
button	presses	and	avoidant	child	attachment	towards	the	mother	(r=	-.39,	p=	.038	–	uncorrected).	*=	p<	.05;	†=	p<	.10,	error	bars	+/-	1	S.E.M.
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Inter-brain coherence data acquired by dual functional 
near-infrared	 spectroscopy	 (fNIRS)	 in	 five	 regions	 of	 in-
terest spanning the right prefrontal and lateral temporal 
cortex (Figure 5.5.3A) was available from N= 28 mother-
child dyads (15 girls; child age M= 11.17, SD= 1.27; moth-
er age M= 45.93, SD= 3.76). We contrasted two interac-
tion conditions during a computerised button-press task 
(Figure 5.5.3B), either requiring dyads to press a button 
as simultaneously as possible (cooperation) or as fast as 
possible regardless of the other dyad partner’s response 
(independent). Child attachment towards the mother was 
acquired with a child version of the Experiences in Close 
Relationships Questionnaire (revised version; ECR-RC).
Findings revealed overall increased inter-brain coherence 
during cooperative versus independent button presses, 
particularly in the dorsolateral and frontopolar prefron-
tal cortex (Figure 5.5.3C). Interestingly, there was a gen-

der-effect in overall inter-brain coherence in that only 
mother-son dyads showed a differential coherence pat-
tern for cooperative versus independent button presses 
(Figure 5.5.3D). Finally, we found preliminary evidence for 
an influence of attachment of the child towards the moth-
er, because inter-brain coherence increases during coop-
erative versus independent button presses in the fronto-
polar prefrontal cortex was less pronounced the higher 
children scored on attachment avoidance (Figure 5.5.3E). 
However, the latter association did not survive correction 
for multiple comparisons (number of ROIs, attachment 
anxiety, child age, and gender). More research is needed 
to better understand the potential role of overall inter-brain 
coherence in mother-child cooperation and the potential 
link between inter-brain coherence and attachment.
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Congresses, Workshops, and Symposia
2019

 � Vrtička,	P.	(March).	The Influence of Parent-Child Interaction 
on Child Development: a Multi-Modal Social Neuroscience 
Approach. Symposium. Biennial Meeting of the Society for 
Research in Child Development (SRCD), Baltimore, USA.

 � Vrtička,	P.	(July).	The Social Neuroscience of Human 
Attachment. Symposium. Biennial International Attachment 
Conference (IAC), Vancouver, Canada.

 � Engert, V. (August). Stress reduction after contemplative men-
tal training: Involvement of plasma oxytocin? 49th International 
Society for Psychoneuroendocrinolgy, Milan, Italy.

 � Vrtička,	P.	(September). Attachment Theory meets Social 
Neuroscience: The Biological and Brain Basis of Human 
Attachment. Symposium. paEpsy (joint conference of 
the Sections Educational Psychology and Developmental 
Psychology of the German Psychological Society [DGPs]), 
Leipzig, Germany. 

Appointments
 � Engert, V. Research Group Leader (W2), Max Planck Society, 

Germany.
 � Engert, V. Professor of Social Neuroscience, Institute of 

Psychosocial Medicine and Psychotherapy, Jena University 
Hospital, Friedrich-Schiller-University Jena, Germany.
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Language comprehension is mostly effortless. However, 
diffi	culty	may	arise	when	speakers	speak	too	fast	or	too	
slowly, or give too much information in too little time. 
Whilst we may be flexible, our comprehension abilities are 
still limited.

Language Cycles looks for electrophysiological proper-
ties of the human brain that limit our verbal processing 
abilities: Does our preferred speed of talking depend on 
the brain’s pace of processing? How much information 
can we process within a given time window, and how long 
are the time windows that our brain uses to sample and 

process language? Are endogenous language-sampling 
time windows of the human brain the reason that all lan-
guages of the world serve information in units of certain 
durations (e.g. words, phrases, and sentences)?

In electrophysiological terms, our working hypothesis is 
that oscillatory activity with periods in the range of sec-
onds underlies linguistic information sampling. Our re-
search combines classical psycholinguistic experiments, 
methods from cognitive neuroscience (e.g. electro- and 
magnetoencephalography (M/EEG), transcranial magnet-
ic stimulation), computational linguistics (e.g. annotated 
cross-linguistic corpora, parsing algorithms, information 
theory),	and	artifi	cial	intelligence.

The	combination	of	psycholinguistic	and	neuroscientifi	c	
methodology enables us to characterise the electrophysi-
ological time windows that determine our pace and lim-
its of linguistic information sampling. Our experimental 
workhorse are ambiguous sentence stimuli that have 
multiple readings: For instance, in The client sued the mur-
derer with the corrupt lawyer., participants’ decision on 
whether The client or the murderer hired the corrupt lawyer 
indicates directly at which pace they sample information 
units from speech (i.e. they either terminate or continue 
a unit at the offset of the murderer). Likewise, in Max saw 
John and Jim smiled., an erroneous sampling of John and 
Jim as a single unit of information triggers a processing 
breakdown at smiled, which can be used to study the un-
derlying reason for the erroneous sampling, that is, the en-
dogenous limit of information sampling.

Our hypothesis is not only directed at the brain, but also 
the possible implications concerning our understanding 
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i i
The beautiful sailboats arrived after the yacht.

Cyclic brain activity

Sampling of information units

Shape of language(s)

?

Figure 5.6.A  Cycles of electrophysiological activity allow for and con-
strain the formation of information units from the speech stream. 
Potentially, this has driven the length and structure of information 
units	across	the	world’s	languages	to	fi	t	processing	cycles.

5.6 
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Afrikaans
Arabic
Belorussian
Bengali
Bulgarian
Buryat
Chinese
Croatian
Czech
Danish
Dutch
English
Estonian
Finnish
French
Georgian
German
Greek
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish

Italian
Japanese
Kazakh

Latvian
Lithuanian
Maltese
Norwegian
Persian
Polish
Portuguese
Quechua
Romanian
Russian
Slovak
Slovene
Spanish
Swedish
Tamil
Thai
Turkish
Ukrainian
Urdu
Vietnamese

Korean

Indo-European
Sino-Tibetan
Niger-Congo
Austronesian
Afro-Asiatic
Dravidian
Turkic
Japonic
Austro-Asiatic
Tai-Kadai
Koreanic
Nilo-Saharan
Mande
Uralic
Hmong-Mien

2,910
1,268
437
386
380
229
170
129
103
81
77
43
27
21
9

× 1,000,000
= number of speakers

Figure 5.6.B  Large-scale corpora annotated for linguistic information units are available for 50+ languages, allowing for typologically repre-
sentative cross-linguistic analyses. For a sub-sample of these languages, EEG data will be acquired and linked to the corpus-linguistic results.

of language as a cultural system: If endogenous electro-
physiological cycles temporally constrain linguistic infor-
mation sampling, could (all) human languages not have 
evolved	to	serve	information	in	units	that	fit	these	cycles	
in duration? To address this hypothesis, we will quantify 
the size of information units in the languages of the world, 
employing large-scale cross-linguistic text corpora. To ex-
plain the observed linguistic units from cyclic electrophys-
iological activity, we will acquire cross-linguistic resting-

state and event-related EEG data. We then aim to link the 
linguistic and electrophysiological data in the frequency 
domain, using methods from computational linguistics 
and	artificial	intelligence.

Our inter-disciplinary research has the potential to explain 
the shape of human language by the processing cycles of 
the human brain—the Language Cycles.
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Figure 5.6.1  (A) In no-boundary sentences (left), den Mörder (the murderer) and mit dem korrupten Anwalt (with the corrupt lawyer) form one 
single syntactic phrase (blue). In boundary sentences (right), mit dem korrupten Anwalt forms a distinct syntactic phrase (red), interpreted as 
linking to Der Klient (the client); conditions are distinguished prosodically. Participants indicated their grouping choice via a button press (bot-
tom). (B) Participants can distinguish the conditions acoustically, but are biased to assume a syntactic phrase boundary (i.e. more two-phrase 
choices for two-phrase sentences than one-phrase choices for one-phrase sentences). (C) Delta-band phase differs between two-phrase and 
one-phrase choices, orthogonal to speech prosody. (D) When a syntactic phrase boundary is assumed, EEG coherence with speech prosody 
reduces, predicting individual bias.
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Linguistic bias modulates interpretation of speech via neural delta-band 
oscillations
Meyer, L. 1, Henry, M. J. 2, Gaston, P. 3, Schmuck, N. 4, & Friederici, A. D. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Max Planck Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
3 Department of Linguistics, University of Maryland, College Park, USA
4 Department of English and Linguistics, Johannes Gutenberg University, Mainz, Germany

Language comprehension requires that single words be 
grouped into syntactic phrases, as words in sentences 
are too many to memorise individually. In speech, acous-
tic and syntactic grouping patterns mostly align. However, 
ambiguous sentences allow for alternative grouping pat-
terns (e.g. The client sued the murderer with the corrupt 
lawyer., where the corrupt lawyer could either belong to The 
client or the murderer). In such situations, comprehenders 
may form phrases that contradict speech prosody. In the 
example, comprehenders tend not to group with the cor-
rupt lawyer with the murderer, even if there is no prosodic 
boundary that interrupts this grouping pattern. While del-
ta-band oscillations are known to track prosody, we hy-
pothesised that linguistic grouping bias can modulate the 
interpretational impact of speech prosody in ambiguous 
situations, which should surface in delta-band oscillations 
when grouping patterns chosen by comprehenders differ 

from those indicated by prosody. In our auditory electro-
encephalography study, the interpretation of ambiguous 
sentences depended on whether an identical word was 
either followed by a prosodic boundary or not, thereby 
signaling the ending or continuation of the current phrase. 
Delta-band oscillatory phase at the critical word should 
reflect whether participants terminate a phrase despite a 
lack of acoustic boundary cues. Crossing speech prosody 
with participants’ grouping choice, we observed a main 
effect of grouping choice—independent of prosody. An in-
ternal linguistic bias for grouping words into phrases can 
thus modulate the interpretational impact of speech pros-
ody via the delta-band oscillatory phase. This is evidence 
that delta-band oscillations do not only passively follow 
speech prosody, but also have an active and potentially 
constraining role in the internal formation of linguistic in-
formation units.

5.6.1



215

Max Planck Research Group “Language Cycles”

Perturbation of left posterior prefrontal cortex modulates top-down 
processing in sentence comprehension
 Meyer, L. 1,  Elsner, A. 1,  Turker, S. 1,  Kuhnke, P. 1, &  Hartwigsen, G. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Communication is an inferential process. In particular, 
language comprehension constantly requires top-down 
efforts, as multiple interpretations are often compatible 
with a given sentence. To assess top-down processing 
in the language domain, our experiment employed am-
biguous sentences that allow for multiple interpretations 
(e.g. The client sued the murderer with the corrupt law-
yer, where the corrupt lawyer could either belong to The 
client or the murderer). Interpretation thus depended on 
whether participants chunked the words of the sentence 
into short or long syntactic phrases. In principle, bottom-
up acoustic information (i.e. the presence or absence of 
an intonational phrase boundary at the offset of the mur-
derer) indicates one of the two possible interpretations. 
Yet, acoustic information often indicates interpretations 
that require words to be chunked into overly long phrases 
that would overburden internal processing constraints, 

such as working memory capacity. Processing is biased 
against these demands, reflected in a top-down prefer-
ence to chunk words into short rather than long phrases. 
It is often proposed, but also debated, that the ability to 
chunk words into short phrases is subserved by the left 
inferior frontal gyrus (IFG). Here, we employed focal repet-
itive transcranial magnetic stimulation to perturb the left 
IFG, which resulted in a further decrease in the aptitude to 
tolerate long phrases, indicating the inability of the left IFG 
to assist the chunking of words into phrases. In contrast, 
auditory information processing was not affected. Our 
fi	ndings	support	a	causal	top-down	role	of	the	left	inferior	
frontal gyrus in chunking words into phrases, which poses 
an endogenous constraint on grouping words into larger 
units of information.
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Figure 5.6.2  (A) In no-boundary sentences (left), den Mörder (the murderer) and mit dem korrupten Anwalt (with the corrupt lawyer) form one 
single syntactic phrase (blue); in boundary sentences (right), mit dem korrupten Anwalt forms a distinct syntactic phrase (red), interpreted as 
linking to Der Klient (the client); conditions are distinguished prosodically; participants indicated their grouping choice via a button press (bot-
tom); (B) participants can distinguish the conditions acoustically, but are biased in assuming a syntactic phrase boundary (i.e. more two-phrase 
choices for two-phrase sentences than one-phrase choices for one-phrase sentences); (C) rTMS over the left IFG, normalised to sham stimula-
tion,	signifi	cantly	reduces	participants’	aptitude	to	generate	a	long	syntactic	phrase,	even	if	prosodic	cues	do	not	indicate	phrase	termination.
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Figure 5.6.3  (A) Entrainment of neural oscillations by a rhythmic ex-
ogenous acoustic stimulus (e.g. a regular tone sequence). Rhythmic 
edges or peaks in the amplitude envelope of the stimulus synchronise 
neural oscillation at stimulation frequency. (B) Entrainment is impos-
sible in cases of non-rhythmic amplitude cues in speech stimulus. (C) 
Intrinsic synchronicity of neural oscillations to a non-rhythmic acous-
tic stimulus (e.g. speech). Inferred and predictive linguistic knowledge 
(e.g. of abstract syntactic structure or predicted words) deployed by 
endogenous	 signals	 (i.e.	 local-field	 potentials	 or	 slower-frequency	
neural oscillations) establishes continued oscillatory rhythmicity dis-
guised as entrainment, in spite of lacking acoustic cues.

Synchronous, but not entrained: Exogenous and endogenous cortical 
rhythms of speech and language processing
Meyer, L. 1, Sun, Y. 2, & Martin, A. E. 3,	 4,	 5
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
3 Psychology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, NL
4 Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, NL
5 Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, NL

Research into speech processing often focuses on a phe-
nomenon termed entrainment, whereby the cortex shad-
ows rhythmic acoustic information with oscillatory activ-
ity. Entrainment has been observed in a range of acoustic 
rhythms that are physically present in speech. In addition 
to acoustic rhythms, synchronicity with abstract infor-
mation (e.g. syntactic structures) has recently been ob-
served. Current accounts of entrainment face two major 
challenges. First, speech is not precisely rhythmic, leaving 
it unclear whether speech acoustics are a plausible cause 
for associated rhythmic electrophysiological activity or 
not. Second, electrophysiological synchronicity with ab-
stract linguistic representations that lack a clear acoustic 
counterpart has recently been described; this synchronic-
ity can, in principle, not have been caused by physical fea-

tures of the speech stimulus. In the current opinion article, 
we propose that apparent entrainment does not always 
result from acoustic information. Rather, internal oscilla-
tory rhythms may have self-contained functionalities in 
the generation of abstract representations and predic-
tions. While acoustics may often provide punctate oppor-
tunities for entrainment, internal rhythms may also have 
self-contained functionalities in the inference and predic-
tion of information, leading to intrinsic synchronicity—not 
to be counted as entrainment. Our proposal may open up 
new research avenues in the psycho- and neurolinguistic 
study of language processing and language development.

5.6.3
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Synchronisation of electrophysiological responses with speech benefits 
syntactic information processing
Meyer, L. 1, & Gumbert, M. 2
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Circuits of Spatial Hearing Group, Max Planck Institute of Neurobiology, Martinsried, Germany

In auditory neuroscience, synchronisation of electrophysi-
ological oscillations to low-level acoustic and high-level 
linguistic features is a well-established phenomenon, but 
its functional purpose for verbal information transmis-
sion is unclear. Here, we hypothesised that the synchro-
nisation of electrophysiological responses at delta-band 
frequency (i.e. < 4 Hz) to the speech stimulus serves to 
implicitly align neural excitability with syntactic informa-
tion.	This	hypothesis	rests	on	two	prior	findings.	First,	the	
phase of an oscillation recorded at the scalp is often taken 
to be a mirror of neuronal excitability, and thus receptive-
ness on the neuronal level. Second, auditory task perfor-
mance, and thus information processing, was previously 
observed to depend on delta-band oscillatory phase. The 
experimental paradigm of our auditory electroencepha-

lography study uniformly distributed morpho-syntactic 
violations across syntactic phrases of natural sentences, 
such that violations would occur at points differing in syn-
tactic information content. In support of our hypothesis, 
we found behavioural responses to morpho-syntactic 
violations to increase with decreasing syntactic informa-
tion	content—in	significant	correlation	with	the	delta-band	
phase, which we found to be synchronised to our speech 
stimuli.	Our	findings	 indicate	 that	 rhythmic	electrophysi-
ological synchronisation to the speech stream is a func-
tional mechanism that may serve to align neural excit-
ability with linguistic information content, optimising the 
uptake of syntactic information during language compre-
hension.
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Figure 5.6.4  (A) morpho-syntactic violations were evenly distributed across phrases of the stimuli, such that they would have a different degree 
of syntactic information content. (B) Violation detection was predicted by syntactic information content (i.e. surprisal). (C) Top row/bottom left: 
delta-band	oscillations	synchronised	with	the	stimuli,	resulting	in	specific,	but	different	phase	angles	associated	with	different	degrees	of	syn-
tactic information content. Bottom middle/right: Phase was correlated with both surprisal and violation detection performance. (D) Correlation 
comparisons suggest that phase intervened between surprisal and violation detection performance, as surprisal and reaction time were less 
strongly correlated than each surprisal and reaction time were correlated with phase.
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Congresses, Workshops, and Symposia
2017

 � Meyer, L. (March). Top-down functions of neural oscillations 
for speech and language processing. Symposium at 24th 
Annual Meeting of the Cognitive Neuroscience Society, San 
Francisco, CA, USA. (Chair) 

 � Meyer, L. (May). The Neural Oscillations in Speech and 
Language Processing. International Symposium, Harnack-
Haus of the Max Planck Society, Berlin, Germany. (Organizer 
together with Alessandro Tavano, Angela D. Friederici & 
David Poeppel)

 � Meyer, L. (May/June). Advances in Language 
Electrophysiology: from Auditory Processing to Sentence 
Comprehension. Symposium at Psychologie und Gehirn, 
Gießen, Germany. (Chair together with Caroline Beese)

Appointments
2018

 � Meyer, L. (2018). Max Planck Research Group Leader (W2), 
Max Planck Society, Germany.

 � Meyer, L. Faculty member of the International Max Planck 
Research School on Neuroscience of Communication: 
Function, Structure, and Plasticity (IMPRS NeuroCom). Max 
Planck Institute for Human Cognitive and Brains Sciences, 
Leipzig, Germany.

Publications
(spanning reporting period, published during or prior to group’s commencement, hence partly overlapping with Dept of 
Neuropsychology)

Journal Articles
Beese, C., Meyer, L., Vassileiou, B., & Friederici, A. D. (2017). 
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nism across the age trajectory. Scientific Reports, 7: 11202. 
doi:10.1038/s41598-017-11632-z.

Beese, C., Vassileiou, B., Friederici, A. D., & Meyer, L. (2019). 
Age differences in encoding-related alpha power reflect sentence 
comprehension	difficulties. Frontiers in Aging Neuroscience, 11: 
183. doi:10.3389/fnagi.2019.00183.

Beese, C., Werkle-Bergner, M., Lindenberger, U., Friederici, 
A.	D.,	&	Meyer,	L.	(2019).	Adult	age	differences	in	the	benefit	of	
syntactic and semantic constraints for sentence processing. 
Psychology and Aging, 34(1), 43-55. doi:10.1037/pag0000300.

Bonhage, C., Meyer, L., Gruber, T., Friederici, A. D., & Mueller, J. 
L. (2017). Oscillatory EEG dynamics underlying automatic chunk-
ing during sentence processing. NeuroImage, 152, 647-657. 
doi:10.1016/j.neuroimage.2017.03.018.

Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., 
Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise 
jointly predict musical pleasure and amygdala, hippocampus, 
and auditory cortex activity. Current Biology. doi:10.1016/j.
cub.2019.09.067.

Cheung, V., Meyer, L., Friederici, A. D., & Koelsch, S. (2018). The 
right inferior frontal gyrus processes nested non-local depend-
encies in music. Scientific Reports, 8: 3822. doi:10.1038/s41598-
018-22144-9.

Kuhnke, P., Meyer, L., Friederici, A. D., & Hartwigsen, G. (2017). 
Left posterior inferior frontal gyrus is causally involved in reor-
dering during sentence processing. NeuroImage, 148, 254-263. 
doi:10.1016/j.neuroimage.2017.01.013.

Meyer, L. (2018). The neural oscillations of speech process-
ing and language comprehension: State of the art and emerging 
mechanisms. European Journal of Neuroscience, 48(7), 2609-
2621. doi:10.1111/ejn.13748.

Meyer, L., Elsner, A., Turker, S., Kuhnke, P., & Hartwigsen, G. 
(2018). Perturbation of left posterior prefrontal cortex modulates 
top-down processing in sentence comprehension. NeuroImage, 
181, 598-604. doi:10.1016/j.neuroimage.2018.07.059.

Meyer, L., & Gumbert, M. (2018). Synchronization of electro-
physiological	responses	with	speech	benefits	syntactic	informa-
tion processing. Journal of Cognitive Neuroscience, 30(8), 1066-
1074. doi:10.1162/jocn_a_01236.

Meyer, L., Henry, M., Gaston, P., Schmuck, N., & Friederici, A. 
D. (2017). Linguistic bias modulates interpretation of speech via 
neural delta-band oscillations. Cerebral Cortex, 27(9), 4293-4302. 
doi:10.1093/cercor/bhw228.

Meyer, L., Sun, Y., & Martin, A. (in press). Synchronous, but 
not entrained: Exogenous and endogenous cortical rhythms 
of speech and language processing. Language, Cognition, and 
Neuroscience. doi:10.31234/osf.io/4s83k.

Piai, V., Meyer, L., Dronkers, N., & Robert T., K. (2017). 
Neuroplasticity of language in left-hemisphere stroke: Evidence 
linking subsecond electrophysiology and structural connec-
tions. Human Brain Mapping, 38(6), 3151-3162. doi:10.1002/
hbm.23581.

Vassileiou, B., Meyer, L., Beese, C., & Friederici, A. D. (2018). 
Alignment of alpha-band desynchronization with syntactic struc-
ture predicts successful sentence comprehension. NeuroImage, 
175, 286-296. doi:10.1016/j.neuroimage.2018.04.008.

Zaccarella, E., Meyer, L., Makuuchi, M., & Friederici, A. D. (2017). 
Building by syntax: The neural basis of minimal linguistic struc-
tures. Cerebral Cortex, 27(1), 411-421. doi:10.1093/cercor/
bhv234.
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Index of Published Figures
Figure 5.6.1

Meyer, L., Henry, M., Gaston, P., Schmuck, N., & Friederici, A. 
D. (2017). Linguistic bias modulates interpretation of speech via 
neural delta-band oscillations. Cerebral Cortex, 27(9), 4293-4302. 
doi:10.1093/cercor/bhw228.

Figure 5.6.2
Meyer, L., Elsner, A., Turker, S., Kuhnke, P., & Hartwigsen, G. 

(2018). Perturbation of left posterior prefrontal cortex modulates 
top-down processing in sentence comprehension. NeuroImage, 
181, 598-604. doi:10.1016/j.neuroimage.2018.07.059.

Figure 5.6.3
Meyer, L., Sun, Y., & Martin, A. E. (in press). Synchronous, but 

not Entrained: Exogenous and endogenous cortical rhythms 
of speech and language processing. Language, Cognition, and 
Neuroscience.

Figure 5.6.4
Meyer, L., & Gumbert, M. (2018). Synchronization of electro-

physiological	responses	with	speech	benefits	syntactic	informa-
tion processing. Journal of Cognitive Neuroscience, 30(8), 1066-
1074. doi:10.1162/jocn_a_01236.
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Minerva Fast Track Group “Milestones of 
Early Cognitive Development”

Infants have remarkable social abilities. From very early 
in life, they have a preference for social over non-social 
stimuli, are guided by the attention and actions of others 
when encoding the world, and develop sophisticated ex-
pectations	of	others’	actions	within	 the	first	year	of	 life.	
It is not before the age of 4 years, however, that children 
are traditionally thought to begin to reason about others’ 
minds. This ability, referred to as Theory of Mind (ToM), is 
characteristic of the complex social interaction that oc-
curs between us humans. Similarly, while infants from 
their	first	year	of	life	have	some	form	of	representation	of	
their own body and actions, it is only by the age of 2 years 
that children recognise themselves in the mirror. Finally, 
by 4 years of age, children begin to reason about their own 
thoughts and beliefs, in parallel with those of others. Our 
research group is guided by the question: How do children 
come to understand themselves and others as thinking 
agents in the world?

(i) Understanding others - A new account of Theory of 
Mind development
The traditional account that ToM develops late, relies on 
language, and is uniquely human has been questioned by 
novel, non-verbal ToM paradigms. These paradigms show 
that preverbal infants, and even apes, take into account 
others’ beliefs in their expectations of the other’s actions 
(e.g., Onishi & Baillargeon, 2005, Science, 308, 255-8; 
Krupenye et al., 2016, Science, 354, 110-4). In our previ-
ous work, we have shown a dissociation between these 
early ToM-like action expectations and later-developing, 
verbal ToM reasoning on the behavioural and neural lev-
els (Grosse Wiesmann et al., 2017, Dev Science, 20, 1-15; 
Grosse Wiesmann et al., 2017, Nature Comm, 8, 1–10; 
Grosse Wiesmann et al., under revision). A core objec-
tive of our group is to understand the cognitive and neural 
structure of the processes that guide infants’ non-verbal, 
ToM-like behaviour, as opposed to a mature, verbal ToM.

(ii) The neural networks of verbal and non-verbal Theory 
of Mind
We have shown that the emergence of verbal ToM reason-
ing in children relies on the maturation of the same brain 
regions that are also involved in ToM in adults (Grosse 
Wiesmann et al., 2017, Nature Comm, 8, 1–10; Grosse 
Wiesmann et al., under revision). Moreover, the matura-
tion	of	a	dorsal	nerve	fibre	bundle,	connecting	temporo-
parietal and inferior-frontal brain regions, played a crucial 
role for the emergence of verbal ToM (Grosse Wiesmann 
et al., 2017, Nature Comm, 8, 1–10). Non-verbal ToM-like 
behaviour, in contrast, was supported by the maturation 
of the inferior parietal lobe (Grosse Wiesmann et al., under 
revision) in a region ventrally connected to the anterior in-
sula.	Along	with	fMRI	data	from	adults,	these	findings	hint	
at a dual-pathway model of ToM, with a dorsal connection 
for verbal ToM reasoning, and a ventral connection for 
non-verbal ToM-like processes. Our research group seeks 
to uncover the functional and structural neural networks 
involved in verbal and non-verbal ToM processes in chil-
dren and adults.

(iii) Understanding the self
A third objective of our group is to get a better under-
standing of the gradual emergence of a mature self-con-
cept and its relation to the development of ToM. We in-
vestigate the hypothesis that early ToM-like behaviour is 
based on a strong orientation towards others. Only when 
a self-concept emerges and children learn to distinguish 
self from other, can a mature verbal ToM develop.

With a combination of behavioural and neurocognitive 
methods, including eye-tracking, fNIRS, EEG, and MRI, 
we aim to clarify the cognitive and neural basis of under-
standing self and others, in early childhood.

5.7 
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Congresses, Workshops, and Symposia
2019

 � Grosse Wiesmann, C. (March) Far from a consensus – On 
the developmental continuity of implicit and explicit Theory 
of Mind. Symposium at the International Conventions for 
Psychological Science (ICPS), Paris, France. (together with 
Josef Perner, Beate Sodian, Daniela Kloo and Diane Poulin-
Dubois)

 � Grosse Wiesmann, C. (October) The development of 
understanding self and other. Workshop at University of 
Copenhagen, Denmark. (Organizer and Chair together with 
Dora Kampis & Victoria Southgate)

Appointments
2019

 � Minerva Fast Track Fellow, Max Planck Society, Germany.

Publications
Books and Book Chapters

Grosse Wiesmann, C. (2018). The emergence of Theory of 
Mind: Cognitive and neural basis of false belief understanding 
in preschool age. PhD Thesis, Max Planck Institute for Human 
Cognitive and Brain Sciences, Leipzig.

Grosse Wiesmann, C., & Southgate, V. (in press). Early theo-
ry of mind development: Are infants inherently altercentric? In 
K. Ochsner, & M. Gilead (Eds.), The neural basis of mentalizing. 
Springer Nature.

Journal Articles
Grosse Wiesmann, C., Friederici, A. D., Disla, D., Steinbeis, N., 

& Singer, T. (2018). Longitudinal evidence for 4-year-olds’ but 
not 2- and 3-year-olds’ false belief-related action anticipation. 
Cognitive Development, 46(April-Juni 2018), 58-68. doi:10.1016/j.
cogdev.2017.08.007.

Grosse Wiesmann, C., Friederici, A. D., Singer, T., & Steinbeis, N. 
(2017). Implicit and explicit false belief development in preschool 
children. Developmental Science, 20(5): e12445. doi:10.1111/
desc.12445.

Grosse Wiesmann, C., Schreiber, J., Singer, T., Steinbeis, N., & 
Friederici, A. D. (2017). White matter maturation is associated 
with the emergence of Theory of Mind in early childhood. Nature 
Communications, 8: 14692. doi:10.1038/ncomms14692.
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Max Planck Research Group  
“Vision and Computational Cognition”

Humans are remarkably accurate at perceiving the visual 
world around them and can effortlessly interact with it in 
a meaningful manner. Despite the apparent simplicity of 
visual perception, it has remained challenging to under-
stand how we are able to extract meaningful information 
from ever-changing visual input. A major component of 
this challenge lies in the sheer complexity of the visual 
world. While we are experts in visual perception, there 
are thousands of different objects we can identify and 
categorise, despite dramatic changes in position, size, il-
lumination, color, shape, or texture. Further, there are an 
abundance of possible features – or dimensions – of an 
object that may be key to their recognition and categorisa-
tion. Many of those dimensions often co-occur in the real 
world,	making	it	difficult	to	identify	their	role	in	visual	per-
ception.	For	example,	two	common	dimensions	of	artifi-
cial objects are “being made of metal” and “having sharp 
edges”,	 but	 their	 co-occurrence	may	make	 it	 difficult	 to	
identify the importance of either of those dimensions for 
object recognition.

The long-term goal of the “Vision and Computational 
Cognition” group is to gain a mechanistic understand-
ing of the processes underlying visual perception, from 
early cortical processing to high-level visual recognition. 
To achieve this goal, our group departs from traditional 
experimental approaches in two critical ways. First, we 
use a large-scale, data-driven approach to identify the 
key components, or “dimensions”, underlying computa-
tions at different visual and cognitive processing stages 

in humans. In particular, we seek to identify interpreta-
ble dimensions from behaviour, brain data, and compu-
tational models of vision and semantics that may form 
the basis for our mental and neural representations of the 
visual world. By acquiring and analysing large behavioural 
and neuroimaging datasets (millions of behavioural trials, 
dense sampling of individual brains), we aim at (1) iden-
tifying the unique contribution of different object dimen-
sions to explaining the observed patterns of data, and (2) 
elucidating their predictive power for other object-related 
behaviour.

Complementing this data-driven approach, we use a 
model-driven computational approach. This approach is 
based	 on	 recent	 developments	 in	 artificial	 intelligence,	
such as deep convolutional neural networks and seman-
tic	 embeddings,	 which	 have	 revolutionised	 the	 fields	 of	
computer vision and natural language processing. We 
plan to study emergent properties of these models de-
pending on the goal – or objective function – they were 
trained for. For example, how does a model architecture 
change when training a model not to categorise objects, 
but to grasp them? This approach may provide critical in-
sight into our understanding of the role of these proper-
ties in visual perception. Finally, we aim at building better 
computational models of human perception and cogni-
tion by improving the correspondence between those 
computational models and the human brain, with the goal 
of bringing us closer to a computational understanding of 
visual processing in humans.

5.8 
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Appointments
2019

 � Hebart, M. Faculty member of the International Max Planck 
Research School on Neuroscience of Communication: 
Function, Structure, and Plasticity (IMPRS NeuroCom). Max 
Planck Institute for Human Cognitive and Brains Sciences, 
Leipzig, Germany.

 � Hebart, M. Max Planck Research Group Leader (W2), Max 
Planck Society, Germany.

Publications
(spanning reporting period, but published prior to joining MPI CBS)

Journal Articles
Bankson, B. B., Hebart, M. N., Groen, I. I. A., & Baker, C. I. (2018). 

The temporal evolution of conceptual object representations re-
vealed through models of behavior, semantics and deep neural 
networks. NeuroImage, 178, 172-182. doi:10.1016/j.neuroim-
age.2018.05.037.

Görgen, K., Hebart, M. N., Allefeld, C., & Haynes, J.-D. (2017). 
The same analysis approach: Practical protection against the 
pitfalls of novel neuroimaging analysis methods. NeuroImage, 
180(Part A), 19-30. doi:10.1016/j.neuroimage.2017.12.083.

Hebart, M. N., & Baker, C. I. (2018). Deconstructing multivariate 
decoding for the study of brain function. NeuroImage, 180(Part 
A), 4-18. doi:10.1016/j.neuroimage.2017.08.005.

Hebart, M. N., Bankson, B. B., Harel, A., Baker, C. I., & Cichy, R. 
M. (2018). The representational dynamics of task and object pro-
cessing in humans. eLife, 7: e32816. doi:10.7554/eLife.32816.

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., Corriveau, 
A., Van Wicklin, C., & Baker, C. I. (2019). THINGS: A database of 
1,854 object concepts and more than 26,000 naturalistic ob-
ject images. PLoS One, 14(10): e0223792. doi:10.1371/journal.
pone.0223792.
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6.1 
Methods and Development Group  
“Nuclear Magnetic Resonance”

Our group is engaged in the development of magnetic 
resonance (MR) methods to study brain anatomy, me-
tabolism, and function. This ranges from radiofrequency 
(RF) hardware to MR pulse sequences and image analy-
sis procedures. Another research theme relates to the 
biophysics underlying image contrast and the quantita-
tive characterisation of tissue composition or physiology, 
particularly in the context of water relaxation. As in previ-
ous	years,	we	have	benefitted	 from	cooperations	within	
and outside the Max Planck Society, of which some are 
exemplarily highlighted below. Other established and new 
partnerships included Hannover Medical School; Leiden, 
Maastricht, Berne, Bristol, and Duke University; as well as 
the Donders Centre and CNR.

Concerning actual development, a novel coil feeding con-
cept was introduced to improve RF transmission at high 
field.	 It	 is	based	on	a	passive	RF	current	mirror	and	 ro-
bustly achieves equal currents in different coil elements. 

Custom-made RF coils are instrumental in experiments in 
fixed	specimens	to	understand	how	tissue	structure	 im-
pacts imaging results. An example of this line of work is the 
role of the extracellular matrix, performed collaboratively 
with Leipzig University’s Paul Flechsig Institute for Brain 
Research and Felix Bloch Institute for Solid-State Physics. 
Interactions	of	an	electromagnetic	field	(EMF)	and	a	bio-
logical object were evaluated, in the numerical domain, for 
RF safety assessment of multi-modal imaging scenarios 
or	the	development	of	subject-specific	human	body	mod-
els (6.1.1). Encouraging results were obtained with pseu-
do-continuous arterial spin labelling (pCASL) through de-
tailed analyses of spin inversion (6.1.2). Meanwhile, our 
sequence implementation is routinely being used in a clin-
ical setting at Leipzig University Hospital’s Department of 
Nuclear Medicine on a PET-MR hybrid scanner. A novel 
editing procedure referred to as PROBE improved the ro-
bustness and flexibility of chemical exchange saturation 
transfer (CEST) MR imaging (MRI) and was tested at the 

Figure 6.1 
(A) The magnet’s patient end after removal of the covers, patient bed, and cold 
heads.  

(B) Service end of the magnet with installed transport bungs; also visible are 
the partly dismantled Faraday cage, the massive iron shield (362 tons), and the 
prepared removal path. 
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Center for Stroke Research Berlin (6.1.3). Indubitably, echo 
planar imaging (EPI) will continue to be the workhorse in 
the majority of the Institute’s MR experiments. Here, a 
novel deconvolution technique for distortion correction 
yielded promising performance. Different flavours of “high 
resolution” were important in applications of resting-state 
functional MRI (fMRI). Recordings of the fluctuation am-
plitude, at submillimetre spatial resolution, were targeted 
at a calibration of blood oxygenation level-dependent 
(BOLD) fMRI and removal of some of the venous bias in 
the BOLD response. Achieving a high temporal resolution 
(order	of	300 ms)	was	crucial	in	studies—performed	joint-
ly with Oxford University—of cardiac pulsatility in the cere-
bral microstructure. Compared to these examples, resolu-
tion was rather coarse (order of centimetres and minutes) 
in functional MR spectroscopy (fMRS), but allowed com-
parisons of metabolic changes during activation and inhi-
bition	(6.1.4).	Activation	patterns	evoked	by	finger	tapping	
in Parkinson’s patients were studied together with Charles 

University in Prague, hinting at different baseline condi-
tions of the motor network in relation to the presence of 
levodopa (6.1.5). 

Considerable effort resulted from damage to our 
Connectom scanner’s gradient coil, probably related to an 
undocumented resonant mode. A look-ahead evaluation 
of the acoustic spectrum of arbitrary MR sequences was 
therefore established, based on earlier work the context 
of echo-planar spectroscopic imaging. Last but not least, 
the requirement to remain at the forefront of imaging 
technology led to the decision to replace our 7T scanner 
after twelve years of extensive operation (some 35,000 
hours of scanning) with extraordinary results (order of 
100 publications). Following de-installation (Fig. 6.1), a 
MAGNETOM Terra is expected to be up and running in 
March 2020.

(C) After de-installing the gradient coil, the 30-ton magnet is lifted away from 
the bay opening.

(D) The magnet secured on a tractor trailer for transportation. 
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Simulation-based optimisation of pCASL and experimental validation
 Lorenz, K. 1, 2,  Mildner, T. 1,  Schlumm, T. 1, &   Möller, H. E. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Faculty of Physics and Earth Sciences, Leipzig University, Germany

Currently, pCASL is the recommended choice for non-
invasive measurements of cerebral blood flow (CBF). 
We optimised such acquisitions through simulations of 
the	labelling	effi	ciency	(α). A large parameter space was 

considered, comprising pulse-sequence and physiologi-
cal variables. Results obtained in silico were validated in 
vivo in the human internal carotid artery employing a fast 
echo planar-imaging protocol at 3T. Choice of a labelling 

6.1.2

Figure 6.1.1  (A) Triangulated surface meshes (generated in ParaView) of segmented tissue compartments including bone, cerebrospinal fluid 
(CSF), grey matter (GM), white matter (WM) with internal and external spinal cord, ventricles, air, as well as all other tissues grouped together 
into a single class. Further shown are (B) coronal and sagittal views of the head segmentation overlaid onto the body segmentation, as well as 
(C) the local B1

+  amplitude and (D) the SAR level from EMF simulations (obtained with ANSYS HFSS) assuming 1 W transmit power at 297.2 MHz 
(i.e., in a 7T scanner).

Other Bone CSF GM WM Ventricles Air

SAR

A

B C D

Volume loss density [W/m3] 
0 00.25 125Head & body segmentation 

B1
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+

Semi-automated generation of individual computational models of the 
human head and torso
 Kalloch, B. 1, 2,  Bode, J. 1, 3,  Kozlov, M.  1,  Pampel, A. 1,  Hlawitschka, M.  2,  Sehm, B. 1,  Villringer, A. 1,   Möller, H. E. 1, & 
 Bazin, P.-L. 1, 4, 5
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Leipzig University of Applied Sciences, Germany
3 Department of Engineering Physics, Münster University of Applied Sciences, Germany
4 Netherlands Institute for Neuroscience, Amsterdam, NL
5 Spinoza Centre for Neuroimaging, Amsterdam, NL

Computational modelling of the interaction of an EMF 
with the human body is important for MRI safety assess-
ment and RF coil design. As anatomical differences im-
pact	the	results,	there	is	a	need	for	subject-specifi	c	mod-
els.	 We	 developed	 a	 pipeline	 (released	 on	 fi	gshare)	 for	
creating surface-based human models with a high level 
of automation from gradient-echo MRI data. It performs 

atlas-based segmentation, mask generation, and trian-
gulation of the boundaries between adjacent structures 
(Fig. 6.1.1). Inter-subject differences are well reproduced, 
and the models are suitable for EMF simulations of the RF 
magnetic	fi	eld	(B1

+		)	and	the	specifi	c	absorption	rate	(SAR)	
using	fi	nite	element	method	software.

6.1.1
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Figure	6.1.2		Contour	plots	of	α	as	a	function	of	the	average	labelling	RF	field	(B1
+ ,av) and the average labelling gradient (Gav ) obtained with RF duty 

cycles, DRF ,	of	33%	(left)	and	50%	(right).	Further	considered	are	different	blood	flow-velocity	weighting	functions.	In	particular,	velocity-depen-
dent weights were either obtained from experimental flow waveforms: (A) during the cardiac cycle in the vertebral artery (CC-VA, velocity v = 13 
– 43 cm/s, (C) in the internal carotid artery (CC-ICA, v = 24 – 72 cm/s, or (B) with a constant weighting (choice of v between 5 and 50 cm/s) was 
assumed. Corresponding mean blood-flow velocities (vmean ) are also indicated. Red contours indicate regions with α ≥ 85%.	Robustness	against	
flow effects is achieved with B1

+ ,av = 1.5 µT and Gav = 0.65 mT/m.

gradient	>9	mT/m	and	an	RF	duty	cycle	>50%	yielded	im-
proved robustness. Effects from flow velocity variations 
during the cardiac cycle were mitigated by careful selec-

tion of the average RF amplitude and labelling gradient 
(Fig. 6.1.2). The optimised settings achieved an α ≈ 90%	
independent	of	local	field	variations	in	the	head.

PROBE—a novel editing scheme for CEST experiments
Lenich, T. 1, Pampel, A. 1, Mildner, T. 1, & Möller, H. E. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

In CEST experiments, information on metabolites is ob-
tained through their influence on the ubiquitous water 
signal. This requires multiple acquisitions with different 
saturation	 frequencies.	 However,	 unspecific	 molecu-
lar contributions produce a background that confounds 
the detection of metabolite peaks. The PROBE satura-
tion scheme compensates for unwanted contributions 
through a bespoke variation of the saturation power yield-

ing a flat baseline (Fig. 6.1.3). Metabolite peaks not con-
sidered in the power optimisation procedure are enhanced 
as distinct perturbations of the baseline. For experimental 
verification,	mapping	of	 the	 lactate	concentration	 in	 the	
presence of bovine serum albumin was performed in vitro 
at 7T. The concept was also applied in a clinical setting 
with excellent background compensation.

6.1.3
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Dynamic metabolic changes in cortical regions with positive and negative 
BOLD response
 Martínez-Maestro, M. 1,  Labadie, C. 2, &  Möller, H. E. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Berlin Center for Advanced Neuroimaging, Charité University Medicine Berlin, Germany

We used fMRS to study metabolic changes during sus-
tained stimulation of human primary visual cortex. Two 
established paradigms were employed to generate wide-
spread areas of positive or negative BOLD responses 

(Fig. 6.1.4). Glutamate concentrations increased dur-
ing activation and decreased during deactivation. These 
changes were positively correlated with the BOLD re-
sponse and probably reflect tricarboxylic acid cycle 

6.1.4

6.1.4		(A,	B)	Visual	stimulation	paradigms	(full-fi	eld	or	small-ring	flickering	checkerboards)	to	produce	(C)	a	positive	BOLD	response	(PBR,	indi-
cated in red) or (D) a negative BOLD response (NBR, indicated in blue) in primary visual areas. Boxes indicate the position and size of the voxel 
selected for fMRS. Glutamate concentrations in individual subjects increased (E) in PBR areas but decreased (F) in NBR areas. (G) The percent 
glutamate concentration changes were positively correlated with the percent BOLD signal change.
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activity. Glucose concentrations decreased during deac-
tivation suggesting increased consumption and upregu-
lated glycolysis. The observed effects do not agree well 
with the assumption of a direct link between glucose uti-

lisation and regulation of blood flow, but support the hy-
pothesis that the hemodynamic response is mainly driven 
by feedforward release of vasoactive messengers.

Levodopa-induced pattern of putamen activity in Parkinson’s disease
Mueller,	K.  1, Holiga,	Š.  1, Möller, H. E. 1, Růžička,	F. 2, 3, Roth, J. 2, 3, Schroeter, M. L.  1,  4, Růžička,	E. 2, & Jech R. 2, 3
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Czech Republic
3 Na Homolce Hospital, Prague, Czech Republic
4 Clinic for Cognitive Neurology, University Hospital Leipzig, Germany

There are discrepancies between previous studies con-
cerning the role of the putamen in levodopa-related brain 
activity changes in Parkinson’s disease (PD). To address 
these,	we	performed	fMRI	in	32 patients	(advanced	akinet-
ic-rigid type of PD) on and off medication using a motor 
paradigm. A differential pattern of levodopa-related puta-
men activity was obtained depending on the experimen-
tal	condition	 (Fig.	6.1.5).	Activity	 increased	during	finger	

tapping and strongly decreased during rest. This pattern 
was associated with an interaction between medication 
and experimental condition. That is, on levodopa the puta-
men was underactive at rest but increased during tapping 
whereas off of levodopa it was increased at rest and was 
absent during tapping. This suggests a fundamental dif-
ference of the involvement of the resting and active motor 
network, depending on the basal ganglia dopamine level.

6.1.5

Figure	6.1.5		Cross-sectional	brain	slices	showing	a	differential	pattern	of	brain	activity	change	(consecutive	blocks	of	finger	tapping	and	rest)	
with levodopa medication (p < 0.05, family-wise error correction at the voxel level). Putamen activity was increased with levodopa during tapping 
(“TAP”;	(A,	C))	but	decreased	during	the	resting	phase	(“REST”;	(B,	C)).	A	significant	interaction	between	the	factors	experimental	condition	(TAP/
REST)	and	medication	(ON/OFF)	was	observed	in	the	left	and	right	putamen	(A−B).	In	contrast,	we	did	not	find	any	brain	activity	differences	
between the OFF and ON states in the primary motor cortex (D).
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Methods and Development Group  
“Brain Networks”

Our	work	 focuses	on	 the	 identification	and	mechanistic	
modelling of functional and structural networks in the 
brain, based on experimental data from EEG/MEG, func-
tional MRI, diffusion MRI, and non-invasive brain stimu-
lation. For this task, we use a combined bottom-up and 
top-down approach. Using biologically realistic computa-
tional modelling, we explore the dynamics and the func-
tional repertoire of neuronal circuits. We developed bio-
logically plausible models of canonical microcircuits and 
metacircuits that implement basic building blocks of cog-
nition, such as input gating, memory, structure building, 
priming, and change detection, and demonstrated how 
such microcircuits can be combined to support complex 
cognitive tasks, such as sentence processing (6.2.1). 

In	addition,	we	develop	and	refine	methods	to	link	extracra-
nial measurements and stimulation to the activity of neural 
populations. In particular, we developed techniques to re-
late non-invasive electrical and magnetic brain stimulation 
to observable behavioural and physiological effects (6.2.2). 
Furthermore, we are working on quality assessment of our 
experimental recordings and data analysis methods. As 
a	first	step,	we	investigated	the	role	of	the	coregistration	
between MEG data and MR models of the brain (6.2.3). 
Importantly, in order to facilitate dissemination of our 
results and collaboration with other researchers, the de-
veloped methodology has been implemented in publicly 
available and open source software toolboxes.

6.2 
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Neural mass modelling – Cortical microcircuits as building blocks of 
cognition
Knösche, T. R. 1, 2, Kunze, T. 1, Gast, R. 1, Schmidt, H. 1, Rose, D. 1, Haueisen, J. 2, Peterson, A. 3, Weiskopf, N. 1,  
Möller, H. E. 1, & Maess, B. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Ilmenau University of Technology, Germany
3 University of Melbourne, Australia

The relative uniformity of local cortical wiring lends sup-
port to the connectionist’s notion that cognitive function 
arises from a distributed network of a large number of 
relatively simple and uniform elements (Douglas & Martin, 
2007, Neuron, 56, 226–238). We show that a simple neu-
ral mass model of a local cortical microcircuit can provide 
basic functionality, such as input-dependent gating and 
memory, tunable by top-down input and neuromodulation 
(Kunze, Peterson, Haueisen, & Knösche, 2017, PLOS One, 
12(12): e0188003). We further demonstrate how co-op-
eration between microcircuits implements more complex 
functionality, such as transient structure building, prim-
ing (Fig. 6.2.1) (Kunze, Haueisen, & Knösche, 2019, Biol. 
Cybern., 113, 273–291), and change detection (Chien, 
Maess, & Knösche, 2019, Biol. Cybern., doi:10.1007/
s00422-019-00804-x).

When connecting local microcircuits to larger networks, 
long-range connectivity through axon bundles becomes 
relevant. Different transmission speeds due to varying 
axon diameters and myelination, as well as ephaptic cou-
pling between axons, govern dispersion and synchroni-
sation of transmitted information. We developed a semi-
analytic axon model, which explains key experimental 
findings	 (Schmidt,	 &	 Knösche,	 2019,	 PLOS	 Comp.	 Biol.,	
15(10): e1007004). This allows one to incorporate poten-
tially measurable parameters, such as axon diameter and 
g-ratio.
To facilitate the study of neural mass models, we de-
veloped the Python based toolbox PyRates (Gast, Rose, 
Möller, Weiskopf, & Knösche, in press, PLOS One), which 
allows for fast and flexible implementation as well as ef-
ficient	exploration	of	brain	network	models.

6.2.1
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Figure 6.2.1  Principle mechanism of priming with two coupled cortical microcircuits A1	*				   and	A2 * , each comprising pyramidal cells (Py), excitatory 
interneurons (EIN), and inhibitory interneurons (IIN). (A) A target stimulus applied to A2	*		 is	too	weak	to	produce	an	output.	(B)	A	stronger	priming	
stimulus produces output at A2 * , which is fed into A1 *     such that it enters the upstate (memorises the input). The output of A2 *  is fed back as top-
down input to the pyramidal cells of A2	*		and	changes	the	functional	fingerprint	of	that	circuit.	(C)	A	weaker	target	stimulus	now	produces	a	signal	
at the output of A2 * . (D) Time courses of the stimulation. (E) Output signal of both microcircuits.
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Field prediction and functional mapping in non-invasive brain stimulation
 Weise, K. 1, 2,  Numssen, O. 1,  Hartwigsen, G. 1,  Madsen, K. H. 3,  Thielscher, A. 3,  Saturnino, G. B. 3, &  Knösche, T. R. 1, 2
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Ilmenau University of Technology, Germany
3 Hvidovre Hospital, University of Copenhagen, Denmark

Electric	fi	eld	modelling	 is	 important	 to	determine	where	
and how neural populations are affected by transcranial 
magnetic or electrical stimulation (TMS, TES), which de-
pends on uncertain head tissue conductivities. We de-
veloped the Python based toolbox pyGPC, implementing 
non-intrusive generalised polynomial chaos, and used it 
to	quantify	the	reliability	of	the	field	estimates	and	iden-
tify	the	most	influential	parameters	(Saturnino,	Thielscher,	
Madsen, Knösche, & Weise, 2019, NeuroImage, 188, 821–
834; Fig. 6.2.2.1).
Due to its focality, TMS can identify brain structures under-
lying behavioural or physiological effects. This mapping 

procedure normally involves exhaustive scanning of 
the coil position, orientation, and stimulation strength. 
We developed a novel method with far fewer experi-
ments and higher accuracy (Weise, Numssen, Thielscher, 
Hartwigsen, & Knösche, in press, NeuroImage). This is 
based	on	 the	unique	 relationship	between	fi	eld	strength	
and	observable	effect,	quantifi	ed	by	the	congruence	fac-
tor. We used this method to localise the cortical genera-
tors of motor evoked potentials in the hand muscles (Fig. 
6.2.2.2).

6.2.2

Figure	6.2.2.1		Some	results	showing	the	uncertainty	and	sensitivity	analysis	for	TMS	and	TES	(tDCS)	fi	eld	calculation.	(Column	1)	Schematic	
stimulation	confi	gurations.	(Column	2)	Mean	and	relative	standard	deviation	(RSD)	of	the	electric	fi	eld	on	the	cortical	surface	under	the	as-
sumption	of	the	conductivity	uncertainties	taken	from	the	literature.	While	signifi	cant	uncertainty	only	occurs	at	locations	with	low	fi	eld	strength	
(sulci)	for	TMS,	tDCS	fi	eld	calculations	are	uncertain	everywhere.	(Columns	3–5)	Relative	contributions	of	different	tissue	types	to	the	uncer-
tainty.	While	TMS	is	somewhat	influenced	by	grey	matter	(GM)	and	white	matter	(WM),	but	not	at	locations	with	a	strong	fi	eld	(gyral	crowns),	
tDCS is strongly impacted by GM, compact bone (CB), and scalp (S), and moderately impacted by WM and cerbrospinal fluid (CSF). Spongy 
bone (SB) has little influence.
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Quality assessment of MEG-to-MRI coregistrations
Sonntag, H. 1, Haueisen, J. 2, & Maess, B. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 Ilmenau University of Technology, Germany

For high precision in source reconstruction of magnetoen-
cephalography (MEG) data, high accuracy of the coreg-
istration of sources and sensors is mandatory, because 
the numerical model of the head is derived from a differ-
ent modality, namely magnetic resonance imaging (MRI). 
In our recent paper, we suggest using target registration 

error (TRE) as criterion for the quality of coregistrations 
(Sonntag, Haueisen, & Maess, 2018, Phys. Med. Biol., 
63(7): 075003). TRE measures the effect of uncertainty 
in coregistrations at all points of interest. In total, 5,544 
datasets with sensor-to-head and 128 head-to-MRI coreg-
istrations, from a single MEG laboratory, were analysed. 
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Figure 6.2.2.2  Normalised congruence factor maps of three subjects on the precentral (left) and postcentral gyri. (Column 1) Results with 
six	predefined	experimental	conditions	(i.e.	coil	positions/orientations).	The	results	are	ambiguous,	showing	also	hotspots	on	the	postcentral	
gyrus.	(Column	2)	Results	for	six	conditions,	optimally	chosen	from	20	predefined	conditions.	The	results	of	the	hand	knob	of	the	precentral	
gyrus	are	as	expected	in	all	subjects.	(Column	3)	Results	for	all	20	predefined	conditions.	The	maps	are	almost	identical	to	the	middle	column,	
showing that a few conditions are enough, if they are chosen optimally.
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An adaptive Metropolis algorithm was used to estimate 
the optimal coregistration and sample the coregistration 
parameters (rotation and translation). We found an aver-
age	TRE	between	1.3	and	2.3 mm	at	 the	head	surface.	
Furthermore, we observed a mean absolute difference in 
coregistration parameters between the Metropolis and 

iterative closest point algorithm of (1.9 ± 1.5)° and (1.1 ± 
0.9) mm. The sampled parameters allowed for computa-
tion of TRE on the entire grid of the MRI volume. Hence, 
we recommend the Metropolis algorithm for head-to-MRI 
coregistrations.
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Figure 6.2.3  Target registration error (TRE) plotted as overlay onto the corresponding MRI slices. The RMS of TRE is computed for all samples 
of all grid points. Black lines indicate the slices in Freesurfer MRI coordinates. The yellow crosshairs indicate the estimated minimum of TRE. 
With respect to axes orientation, (A) refers to anterior, (P) to posterior, (I) to inferior, (S) to superior, (R) to right, and (L) to left. On the left and right 
sides, the coronal and sagittal cuts at slices 110 and 100 are plotted, respectively.
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Awards
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2018
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21st International	Conference	on	Biomagnetism	(BIOMAG	
2018), Philadelphia, PA, USA.

2019
 � Schmidt, H. Poster Award. 28th Annual	Computational	

Neuroscience Meeting (CNS*2019), Barcelona, Spain.
 � Weise, K. Best Poster Award. 4th International	Conference	

on Basic and Clinical Multimodal Imaging (BaCI), Chengdu, 
China.
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Kim, S.-G., Mueller, K., Lepsien, J., Mildner, T., & Fritz, T. H. (in 
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of cognitive priming and structure building from the hierarchi-
cal interaction of canonical microcircuit models. Biological 
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6.3 

Adaptations to GDPR and BDSG, and software development for Castellum
Goldau, M. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

The 2018 amendment of general data protection regula-
tions (GDPR) by the European Union and its implementa-
tion in Germany by the Bundesdatenschutzgesetz (BDSG) 
has considerably strengthened the rights of subjects in 
the processing of their personal data.
For our institute, which conducts extensive research with 
human subjects, this change entailed considerable ad-
justments, particularly in the areas of legal bases (decla-
rations of consent), data information, and restrictions on 
processing.
Because many participants are naturally interested in their 
brain scans, there is an increased number of requests to 
retrieve such data. In this context, tools and processes 
were developed to effectively implement subjects’ rights 
regarding their data, whilst allowing flexibly to the chang-
ing legal situation and to scale well with data volume and 
inquiries. Implementing these processes with free soft-
ware was a strong focus.
At the same time, an inter-institutional project of the Max 
Planck Society (MPS) was started to create a generic da-
tabase for test subjects.

Four research facilities are involved in the Castellum pro-
ject: the Max Planck Institute for Human Development 
(MPI-B) in Berlin, which leads the project; the Max Planck 
Institute for Psychiatry (MPI-P) in Munich; the Max Planck 
Computing and Data Facility (MPCDF) in Munich; and 
the Max Planck Institute for Human Cognitive and Brain 
Sciences in Leipzig. The Max Planck Institute for Empirical 
Aesthetics (MPI-eA) in Frankfurt/Main was added later in 
an advisory capacity.

Different self-developed software solutions have been 
employed previously at the individual institutes, which are 
mostly tailored to the prevailing workflows.
The project is scheduled to run for three years (from 2018) 
and will deliver generic open-source software for subject 
management to the Max Planck Society and its institutes.
Castellum	faces	the	significant	challenge	of	meeting	the	
very	 specific	 requirements	 of	 the	 institutes,	 whilst	 also	
finding	a	holistic	solution.
For example, it is currently being deployed at the MPI-B 
in a pilot phase, whereas the features presently imple-
mented remain inadequate for the other participating in-
stitutes.
To help address this, stronger modularisation was en-
couraged by us and has now concluded. This makes it 
possible to selectively add, remove, replace, or reuse sin-
gle modules.

Whilst our current self-developed database system is very 
flexible, it is not adequately prepared for the challenges of 
data protection and technological change.
In addition, our current database management system is 
based on expiring technology, so that a change is immi-
nent for our institute in the medium term.

Castellum offers our institute the opportunity to replace 
our database management system and prepare for new 
technological challenges.
Digitisation, data protection, mobile devices, or self-man-
agement of the test subjects are only a few such chal-
lenges that could be addressed adequately and holisti-
cally with a new technological fundament.

6.3.1
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News from IT
Hayd, H. 1
1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

File Service Solution
Over the past few years ZFS has become a well-estab-
lished	component	of	our	file	service	solution.	It	offers	dif-
ferent levels of data loss prevention and performance. 
NFSv4.2 allows the sharing of ZFS datasets with the reli-
able authentication and authorisation of Kerberos. Our lat-
est	ZFS	file	server	has	a	gross	capacity	of	more	than	1 PB	
(88 hard	disks).	The	segmentation	of	the	stored	data,	 in	
blocks, ensures the horizontal scalability and manageabil-
ity for the future. Usually, a block consists of the data from 
a project or a study. A set of internally developed scripts 
makes the management of the blocks (e.g. context aware 
movement to another server, archiving, or handling of 
orphaned	 files)	 easy	 and	 less	 error-prone.	This	 set	was	
completed by a graphical user interface for the user self-
service.	The	underlying	script	 allows	 the	defining	of	 the	
access-control list, to apply for disk space, the archiving.

Remote Access
For remote access to our Linux servers we have set up a 
new NoMachine server with GPU-accelerated 3D render-
ing and H.264 encoding and decoding. This channel into 
the institute is much more secure than any VPN tunnel. 
This is because it only allows the transfer of pixels and 
signals	from	the	input	devices	and	not	file	transfer	(origi-
nating from malware on the client). A two-factor authenti-
cation additionally increases the security.

Singularity
We are introducing Singularity in connection with Gitlab 
and its DevOps tools. Singularity is a free, cross-platform, 
and open-source software for containerisation of user 
programmes or even complete software environments. 
Singularity	brings	reproducibility	 to	scientific	computing.	
The development of the containers will be tracked by git. 
Any	 change	of	 the	definition	 file	 of	 a	 container	 starts	 a	
rebuild of the container using the DevOps tools of Gitlab 
and makes the new version available in a public download 
area. 

Pap2Com
We have developed a solution, called Pap2Com, to in-
corporate information on paper into an electronic work-
flow. It consists of a consumer scanner, a Raspberry Pi (a 
pocket-sised computer), and a collection of open source 
programmes integrated in a self-developed Python frame-
work. At the time of writing we have already digitised more 
than 150 thousand pages.

6.3.2
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cognitive and neural mechanisms of phonagnosia. Humboldt 
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Books and Book Chapters

Mathias, S., & von Kriegstein, K. (2019). Voice processing and 
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Roswandowitz, C., Maguinness, C., & von Kriegstein, K. (2019). 
Deficits	in	voice-identity	processing:	Acquired	and	developmental	
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book of voice perception (pp. 855-892). Oxford: Oxford University 
Press.

7.1 
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e0176591. doi:10.1371/journal.pone.0176591.

Sarzynska,	 J.,	 Żelechowska,	 D.,	 Falkiewicz,	 M.,	 &	 Necka,	 E.	
(2017). Attention training in schoolchildren improves attention 
but fails to enhance Fluid intelligence. Studia Psychologica, 
59(1), 50-65. doi:10.21909/sp.2017.01.730.
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Schaare, H. L., Kharabian, S., Beyer, F., Kumral, D., Uhlig, M., 
Reinelt, J., Reiter, A., Lampe, L., Babayan, A., Erbey, M., Röbbig, 
J., Schroeter, M. L., Okon-Singer, H., Mueller, K., Mendes, N., 
Margulies, D. S., Witte, A. V., Gaebler, M., & Villringer, A. (2019). 
Association of peripheral blood pressure with gray matter vol-
ume in 19- to 40-year-old adults. Neurology, 92(8), e758-e773. 
doi:10.1212/WNL.0000000000006947.

Tang, R., Ketcha, M., Badea, A., Calabrese, E. D., Margulies, 
D. S., Vogelstein, J. T., Priebe, C. E., & Sussman, D. L. (2019). 
Connectome smoothing via low-rank approximations. 
IEEE Transactions on Medical Imaging, 38(6), 1446-1456. 
doi:10.1109/TMI.2018.2885968.

Villena-Gonzalez, M., Wang, H.-t., Sormaz, M., Mollo, G., 
Margulies, D. S., Jefferies, E. A., & Smallwood, J. (2018). 
Individual variation in the propensity for prospective thought 
is associated with functional integration between visual and 
retrosplenial cortex. Cortex, 99, 224-234. doi:10.1016/j.cor-
tex.2017.11.015.

Wang, H.-T., Bzdok, D., Margulies, D. S., Craddock, C., 
Milham, M., Jefferies, E., & Smallwood, J. (2018). Patterns of 
thought: Population variation in the associations between 
large-scale network organisation and self-reported experienc-
es at rest. NeuroImage, 176, 518-527. doi:10.1016/j.neuroim-
age.2018.04.064.
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Otto Hahn Research Group “Neural Bases of 
Intonation in Speech and Music”

Degrees
Habilitation Theses
2018

 � Sammler, D. The Melodic Mind: Neural bases of intonation in 
speech and music. Leipzig University, Germany. 

PhD Theses
2017

 � Bianco, R. Principles of action planning in music production: 
Evidence from fMRI and EEG studies in professional pianists. 
Leipzig University, Germany.

Publications
Books and Book Chapters

Sammler, D. (2017). Neurophysiologische Aspekte des 
Singens. In M. Fuchs (Ed.), Die Stimme im pädagogischen Alltag 
(pp. 187-196). Berlin: Logos Verlag. 

Journal Articles
Bianco, R., Novembre, G., Keller, P. E., Villringer, A., & Sammler, D. 

(2018). Musical genre-dependent behavioural and EEG signatures of 
action planning: A comparison between classical and jazz pianists. 
NeuroImage, 169, 383-394. doi:10.1016/j.neuroimage.2017.12.058.

Harding, E., Sammler, D., Henry, M., Large, E. W., & Kotz, S. A. (2019). 
Cortical tracking of rhythm in music and speech. NeuroImage, 185, 
96-101. doi:10.1016/j.neuroimage.2018.10.037.

Harding, E., Sammler, D., & Kotz, S. A. (2019). Attachment pref-
erence in auditory German sentences: Individual differences and 
pragmatic strategy. Frontiers in Psychology, 10: 1357. doi:10.3389/
fpsyg.2019.01357.

Hartwigsen, G., Scharinger, M., Sammler, D. (2018). Modulating 
cortical dynamics in language, speech, and music. Frontiers in 
Integrative Neuroscience, 12, 58.

Hellbernd, N., & Sammler, D. (2018). Neural bases of social com-
municative intentions in speech. Social Cognitive and Affective 
Neuroscience, 13(6), 604-615. doi:10.1093/scan/nsy034.

Martins, M., Bianco, R., Sammler, D., & Villringer, A. (2019). 
Recursion in action: An fMRI study on the generation of new hier-
archical levels in motor sequences. Human Brain Mapping, 40(9), 
2623-2638. doi:10.1002/hbm.24549.

Sammler, D., Cunitz, K., Gierhan, S. M. E., Anwander, A., Adermann, 
J., Meixensberger, J., & Friederici, A. D. (2018). White matter path-
ways for prosodic structure building: A case study. Brain and 
Language, 183, 1-10. doi:10.1016/j.bandl.2018.05.001.

Speck, I., Echternach, M., Sammler, D., & Schulze-Bonhage, A. 
(2018). Frontal lobe epileptic seizures are accompanied by elevat-
ed pitch during verbal communication. Epilepsia, 59(3), e23-e27. 
doi:10.1111/epi.14012.

Sun, Y., Lu, X., Ho, H. T., Johnson, B. W., Sammler, D., & Thompson, 
W. F. (2018). Syntactic processing in music and language: Parallel 
abnormalities observed in congenital amusia. NeuroImage: Clinical, 
19, 640-651. doi:10.1016/j.nicl.2018.05.032.

Torppa, R., Faulkner, A., Laasonen, M., Lipsanen, J., & Sammler, D. 
(2019). Links of prosodic stress perception and musical activities 
to language skills of children with CIs and normal hearing. Ear and 
Hearing. doi:10.1097/AUD.0000000000000763.

Vanzella, P., Balardin, J. B., Furucho, R. A., Morais, G. A. Z., Braun-
Janzen, T., Sammler, D., & Sato, J. R. (2019). fNIRS responses in pro-
fessional violinists while playing duets: Evidence for distinct leader 
and follower roles at the brain level. Frontiers in Psychology, 10: 164. 
doi:10.3389/fpsyg.2019.00164.

7.3 
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Former Groups

Max Planck Research Group  
“Early Social Cognition”

Degrees
PhD Thesis
2018 

 � Schleihauf, H. Why do we imitate nonsense? The underlying 
motivations of overimitation. Heidelberg University, Germany.

Appointments
2017 

 � Hoehl, S. Full Professor of Developmental Psychology, 
Faculty of Psychology, University of Vienna, Austria.

 � Hoehl, S. Full Professor (W3) of Developmental and 
Educational Psychology, University of Bremen, Germany 
(declined)

 � Hoehl, S. Professor (W2) of Psychology with a Focus on 
Neurocognitive Development and Self-Regulation, School 
of Education, Bergische Universität Wuppertal, Germany 
(declined)

Publications
Books and Book Chapters

Hoehl, S. (2017). Wahrnehmung und Kategorisierung von 
Gesichtern in der frühen Kindheit. In M. Schlette, T. Fuchs, & A. 
M. Kirchner (Eds.), Anthropologie der Wahrnehmung  (pp. 89-108). 
Heidelberg, Germany: Universitätsverlag Winter.

Hoehl, S. (2017). Developmental cognitive neuroscience. In L. 
Centifanti, & D. Williams (Eds.), The Wiley handbook of develop-
mental psychopathology (pp. 181-196). Hoboken: Wiley-Blackwell.

Hoehl, S. (2017). Frühkindliches Lernen in sozialen 
Interaktionen: Welche Rolle spielt Verkörperung? In G. Etzelmüller, 
T. Fuchs, & C. Tewes (Eds.), Verkörperung - eine neue interd-
isziplinäre Anthropologie (pp. 33-56). Berlin: de Gruyter.

Hoehl, S., & Michel, C. (2018). Der lange Weg zum ersten Satz: 
Sprachentwicklung in den ersten Lebensjahren. In V. Mall, F. 
Voigt, & N. H. Jung (Eds.), Sprache, Kommunikation und Musik: 
Aktuelle Beiträge zur Diagnostik und Therapie (pp. 19-30). Lübeck, 
Germany: Schmidt Römhild.

Journal Articles
Hoehl, S. (2017). Spinnefeind: Angst vor Schlangen und Spinnen 

ist in uns angelegt. Max-Planck-Gesellschaft Jahrbuch 2017.
Hoehl, S., Hellmer, K., Johansson, M., & Gredebäck, G. (2017). 

Itsy bitsy spider…: Infants react with increased arousal to spi-
ders and snakes. Frontiers in Psychology, 8: 1710. doi:10.3389/
fpsyg.2017.01710.

Hoehl, S., Keupp, S., Schleihauf, H., McGuigan, N., Buttelmann, 
D., & Whiten, A. (2019). “Over-imitation”: A review and apprais-
al of a decade of research. Developmental Review, 51, 90-108. 
doi:10.1016/j.dr.2018.12.002.

Hoehl, S., & Markova, G. (2018). Moving developmental social 
neuroscience toward a second-person approach. PLoS Biology, 
16(12): e3000055. doi:10.1371/journal.pbio.3000055.

Hoehl, S., & Pauen, S. (2017). Do infants associate spi-
ders and snakes with fearful facial expressions? Evolution and 
Human Behavior, 38(3), 404-413. doi:10.1016/j.evolhumbe-
hav.2016.12.001.

Kayhan, E., Gredebäck, G., & Lindskog, M. (2018). Infants distin-
guish between two events based on their relative likelihood. Child 
Development, 89(6), e507-e519. doi:10.1111/cdev.12970.

7.4 
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Kayhan, E., Heil, L., Kwisthout, J., van Rooij, I., Hunnius, S., & 
Bekkering, H. (2019). Young children integrate current observa-
tions, priors and agent information to predict others’ actions. 
PLoS One, 14(5): e0200976. doi:10.1371/journal.pone.0200976.

Kayhan, E., Hunnius, S., O’Reilly, J. X., & Bekkering, H. (2019). 
Infants differentially update their internal models of a dynam-
ic environment. Cognition, 186, 139-146. doi:10.1016/j.cogni-
tion.2019.02.004.

Kayhan, E., Meyer, M., O’ Reilly, J. X., Hunnius, S., & Bekkering, H. 
(2019). Nine-month-old infants update their predictive models of 
a changing environment. Developmental Cognitive Neuroscience: 
a Journal for Cognitive, Affective and Social Developmental 
Neuroscience, 38: 100680. doi:10.1016/j.dcn.2019.100680.

Köster, M., Langeloh, M., & Hoehl, S. (2019). Visually en-
trained theta oscillations increase for unexpected events in 
the infant brain. Psychological Science, 30(11), 1656-1663. 
doi:10.1177/0956797619876260.

Langeloh, M., Buttelmann, D., Matthes, D., Grassmann, S., 
Pauen, S., & Hoehl, S. (2018). Reduced mu power in response to 
unusual actions is context-dependent in 1-year-olds. Frontiers in 
Psychology, 9: 36. doi:10.3389/fpsyg.2018.00036.

Langeloh, M., Buttelmann, D., Matthes, D., Susanne, G., Pauen, 
S., & Hoehl, S. (2019). Corrigendum: Reduced mu power in re-
sponse to unusual actions is context-dependent in 1-year-olds. 
Frontiers in Psychology, 10: 316. doi:10.3389/fpsyg.2019.00316.

Michel, C., Kaduk, K., Ní Choisdealbha, Á., & Reid, V. M. 
(2017). Event-related potentials discriminate familiar and unu-
sual goal outcomes in 5-month-olds and adults. Developmental 
Psychology, 53(10), 1833-1843. doi:10.1037/dev0000376.

Michel, C., Pauen, S., & Hoehl, S. (2017). Schematic eye-gaze 
cues influence infants’ object encoding dependent on their con-
trast polarity. Scientific Reports, 7: 7347. doi:10.1038/s41598-
017-07445-9.

Michel, C., Wronski, C., Pauen, S., Daum, M. M., & Hoehl, S. 
(2019).	Infants’	object	processing	is	guided	specifically	by	social	
cues. Neuropsychologia, 126, 54-61. doi:10.1016/j.neuropsycho-
logia.2017.05.022.

Peykarjou, S., Hoehl, S., Pauen, S., & Rossion, B. (2017). Rapid 
categorization of human and ape faces in 9-month-old infants 
revealed by fast periodic visual stimulation. Scientific Reports, 7: 
12526. doi:10.1038/s41598-017-12760-2.

Schleihauf, H., Graetz, S., Pauen, S., & Hoehl, S. (2018). 
Contrasting social and cognitive accounts on overimitation: 
The role of causal transparency and prior experiences. Child 
Development, 89(3), 1039-1055. doi:10.1111/cdev.12780.

Schleihauf, H., Pauen, S., & Hoehl, S. (2019). Minimal group for-
mation influences on over-imitation. Cognitive Development, 50, 
222-236. doi:10.1016/j.cogdev.2019.04.004.
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8Neuroscience 
of Communication: 
Function, Structure, 

and Plasticity
International Max Planck Research School 

The International Max Planck Research School on Neuroscience of 
Communication: Function, Structure, and Plasticity (IMPRS NeuroCom) is 
an interdisciplinary PhD programme. The school is based at the MPI CBS 
and Leipzig University (LU) and also involves the Max Planck Institute for 
Evolutionary Anthropology (MPI EVA), also in Leipzig, and the Institute of 
Cognitive Neuroscience (ICN) at University College London in the UK. The 
IMPRS NeuroCom is funded by the Max Planck Society, the MPI CBS, and the 
LU. Currently the school is in its second funding period (2015-2021). We re-
ceive about 300 applications yearly, from which we select 15-20 outstanding 
doctoral researchers. The graduate school strengthens the already-existing, 
close working relationship between the participating institutions. 
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PhD students and projects

* We differentiate between the following project stages: Orientation: PhD student has recently started the PhD project and is in the 
process	of	finding	a	PhD	topic;	Progressed:	PhD	student	is	planning/running	studies	and	writing	papers;	Final:	PhD	student	is	writ-
ing up the thesis; Submitted: PhD student has submitted the thesis at University and is waiting for the defense; Completed: PhD 
student has successfully defended the thesis between 2017–2019.

Module I: Language and Communication
Student Project Project Stage*

Adamson, Helyne Understanding mechanisms of brain plasticity using multimod-
al imaging to assess brain structure changes during L2 learning

progressed

Dr Beese, Caroline The effects of neurocognitive aging on sentence processing completed

Dr Bianco, Roberta Principles of action planning in music production: evidence 
from fMRI and EEG studies

completed

Carthaus, Anna Neural segregation of syntax and semantics in healthy  
individuals and epilepsy patients

left the Institute 
during 2017–2019

Cheung, Ka-Ming Predictive processes in musical syntactic cognition final

Chien, Pei-Ju Neural networks for lexical tone and intonation in Mandarin 
Chinese: a cross-linguistic perspective

progressed

Girlich, Sarah Verb Acquisition in German-speaking children – evidence from 
various methods

progressed

Goranskaya, Dariya Neural basis of grammar learning final

Graessner, Astrid Interactions in the cortical language network for basic semantic 
composition

progressed 

Gugnowska, Katarzyna Neural bases of interpersonal coordinated behaviour during 
music performance

progressed

Hellbernd, Nele The tone of voice conveys speakers‘ intentions: Acoustics,  
perception and neural bases of intentional prosody

final

Kohler, Natalie Neural bases of joint action in music progressed
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Krause, Carina Denise Syntactic complexity and verbal working memory load in  
sentence comprehension

final

Dr Kroczek, Leon The impact of speaker information on language processing completed

Lisanik, Martin Functional correlates of second language acquisition:  
A longitudinal fMRI study on second language processing  
in	comparison	with	first	language

left the Institute 
during 2017–2019

Maran, Matteo The implementation of the syntactic merge mechanism in  
the cortical language network: causal neuronal indexes of 
grammatical category access and hierarchization

progressed

Dr Marzecová, Anna How prediction and attention jointly shape visual

processing: a predictive coding view

completed

Menn, Katharina The role of top-down information for speech entrainment 
during early language acquisition

orientation

Numssen, Ole Functional segregation in the default mode network: The left 
and right TPJ in attention, semantic and social processing‘

left the graduate 
school during 
2017–2019

Papitto, Giorgio Broca´s area in the neural networks of language and action progressed

Qi, Ting The structure of the brain during language development:  
associations between brain structure and sentence  
comprehension in children

final

Roho, Inès Relation of vocal production and white matter connectivity in 
the chimpanzee‘s brain

orientation

Dr Roswandowitz, Claudia Voice-identity	processing	deficit.	The	cognitive	and	neural	
mechanisms of phonagnosia

completed

Rysop, Anna Modulating the neural network dynamics of auditory speech 
comprehension - the role of the angular gyrus

progressed

Schell, Marianne Neuroanatomical correlates for syntactic and semantic  
composition on a fundamental level

final

Schliephake, Lena The role of the lateral geniculate nucleus 
in autism spectrum disorder

left the Institute 
during 2017–2019

©	Thomas	Abé	:	Fotografie
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Schroën, Joëlle The chronometry of semantic processing in the brain orientation

Stuckenberg (née Erfort), 
Maria

Bimodal interaction mechanisms final

Trettenbrein, Patrick 
Christian

Modality (in-)dependence of syntactic processing progressed

Tu, Hsing-Fen Modulation of visual search performance by auditory  
stimulations in early childhood

final

Vassileiou, Benedict Description of the spatiotemporal network dynamics  
subserving working memory resources involved in sentence 
comprehension

progressed

Wei, Xuehue The language connectome: plasticity in second language  
acquisition

progressed

Winkler, Marina Learning complex grammar from simple tones: young infants‘ 
and adults‘ processing of nested dependencies measured by 
EEG and fNIRS

progressed

Dr Xiao, Yaquiong Resting-stage functional connectivity in the brain and its  
relation to language development in preschool children

completed

Module II: Cognitive and Affective Neuroscience1

Student Project Project Stage

Deilmann, Felix Mnemonic decision making: replay and preplay as a  
mechanism for generalizing knowledge

progressed

Gallistl, Mathilde Investigation of social processes and physiological stress  
resonance in dyads

orientation

Kaniuth, Philipp Identifying core dimensions underlying human object  
recognition

orientation

Karew, Artem Development of grid cells and their effect on cognition in  
children

progressed

Langeloh, Miriam Neural correlates of imitation in infancy final

Lewis, Carolin Hormonal modulation of reward processing and mood in women progressed

Linz, Roman The mind-brain-body triad in healthy humans: exploring interac-
tions of subjective experience, neural and endocrine biomarkers 
within the framework of stress

final

Dr Lumma, Anna-Lena The	integration	of	first-	and	third-person	methods	in	the	context	
of meditation practices and the self

completed

Meyer, Ann-Kristin Examining the disruption of suppressed memory  
representations

progressed

Molloy, Eoin Functional, network, and metabolic alterations in neural  
responses during sequence motor learning in response to  
escitralopram

progressed

Nitsch, Alexander Coding principles for value-based decision making progressed

Oligschläger, Sabine Gradients of connectivity distance in the primate cerebral cortex final

Paulus, Philipp Affective representations in medial prefrontal cortex progressed
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Dr Polyakova, Maryna Searching for pathomechanisms of late life minor depression- 
combined MRI, biomarker and meta-analytic study

completed

Puhlmann, Lara Differential effects of contemplative mental training on  
health-related bio-markers as a function of practice type

final

Reisner, Volker Deformations of spatial representations in the human brain progressed

Roesch, Sarah Episodic simulation, affect induction, and decision-making orientation

Schäfer, Theo A. J. Spatial deformations of cognitive spaces progressed

Dr Schleihauf, Hanna Why do we imitate nonsense? The underlying motivations  
of overimitation

completed

Schüler, Clara The early self-concept and the development of self-other  
distinction

orientation

Stoffregen, Hanna Emergence of generalised reward representations progressed

Tebbe, Anna-Lena Neural basis of theory of mind development orientation

Teichmann, Florian Minimal agency progressed

Dr Valk,	Sofie The structure of the social brain: dissociating socio-affective 
and socio-cognitive network through the study of individual 
differences, brain plasticity, and disease models

completed 

Dr Zinchenko, Artyom Prediction and control in multisensory emotion integration completed

Zsido, Rachel Association of sex hormones, serotonin, and metabolic risk 
factor with the brain and cognitive health

progressed

1 For reasons of faculty member retirement or relocation, the structure and research focus of Module II, in particular, has changed con-
siderably. Formerly named “Social, Cognitive and Affective Neuroscience”, it is now named “Cognitive and Affective Neuroscience”.

Module III: Basic and Clinical Neuroscience 
Student Project Project Stage

Albrecht, Franziska Neural correlates of parkinsonian syndromes completed

Baczkowski, Blazej Integrating pavlovian conditioning with relational knowledge  
for adaptive threat (fear) memory

final

Ballarini, Tommaso Magnetic Resonance Imaging biomarkers for clinical  
symptoms and therapy in parkinson’s disease

submitted

Belger, Julia Application of Virtual Reality in the assessment of visuospatial 
neglect after stroke

progressed

Bialas, Ole The cortical encoding of sound source elevation progressed

Blöchl, Maria Vascular risk and disease as cause of depressive symptoms 
during lifespan

progressed

Braga, Alessandro Motor driven predictive processes in the auditory cortex progressed

Dabbagh, Alice Spinal cord imaging and pain perception orientation

Dermody, Nadene Neural correlates of frontotemporal lobar degeneration (FTLD) left the Institute 
during 2017–2019

Gippert, Magdalena Motorical learning orientation
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Module IV: Neuroimaging Physics and Signal Processing
Student Project Project Stage

Brammerloh, Malte Biophysical modeling of iron-induced MRI contrast in the  
human brain

progressed

Chien, Shih-Cheng Brain network dynamics in deviance response and auditory 
perception

submitted

Gong, Ruxue Development of a framework for treating Parkinsonian motor 
symptoms by brain state-dependent transcranial magnetic 
stimulation

progressed

Grigoryan, Khosrov Neural correlates of brain-computer interface-based  
post-stroke motor rehabilitation

progressed

Dr Hardikar, Samyogita Taste perception in obesity completed 

Herzog, Nadine Working memory updating and maintenance in obesity:  
bridging fMRI, EEG, and dopamine

progressed

Hofmann, Simon Understanding deep learning to model the brain and mind progressed

Dr Jacobsen, Estrid N. Sub-dividing Broca‘s region based on functional connectivity: 
New methods for individual level in vivo cortical parcellation

completed

Kandia, Dimitra-Maria Effects of early music experience on language development progressed

Kaptan, Merve Functional imaging of the spinal cord: methodological and  
anatomical aspects

progressed

Morozova, Maria Microstructural	properties	of	long	fibre	connections	in	the	 
human central nervous system

progressed

Ruthig, Philip Comparative microanatomy of mammalian auditory brain areas orientation

Dr Sarrou, Mikaella Auditory motion: perception and cortical response completed

Schaare, Herma Lina The relationship between blood pressure, vascular disease and 
the brain: a neuroimaging approach

submitted

Schulz, Charlotte Effects of child maltreatment on adolescent brain structure, 
function and psychopathology: roles of threat and deprivation

progressed

Shih, Pei-Cheng The effects of aging and stroke on bilateral coordination final

Stephani, Tilmann Probing instantaneous cortical states with neuronal oscillations 
and stimulus-evoked responses

progressed

Uhlig, Marie Effect of diurnal rhythm and its disruptions by acute stress on 
grey matter volume

progressed

Waltmann, Maria Neurocognitive mechanism of maladaptive decision making in 
binge eating disorder and obesity

progressed
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Devi, Ratnamanjuri Magnetic resonance investigations of physiological effects 
related to functional inhibition

progressed

Gast, Richard Modeling phase transitions in neural motor circuits in health 
and disease - a combined experimental and computational 
approach

progressed

Georgi, Jakob Quantitative	characterization	of	nerve	fibers left the Institute 
during 2017-2019

Dr Guidi, Maria Depth-dependent physiological modulators of the BOLD  
response in the human motor cortex

completed

Haenelt, Daniel Submillimetre fMRI - which MR sequence yields the best  
results?

progressed

Jamshidi Idaji, Mina Multivariate	methods	for	quantification	of	nonlinear	 
interactions in human brain

progressed

Kalloch, Benjamin Individualised therapy through computer simulation - prediction 
and optimization of the effects of transcranial direct current 
stimulation	on	sensorimotor	deficits	after	a	stroke	

final

Dr Kanaan, Ahmad Seif Elemental and neurochemical based analysis of thepathophysi-
ological mechanisms of Gilles de la Tourette Syndrome

completed

Dr Kim, Seung-Goo Myeloarchitectonic and functional organizations of auditory 
cortex in musicians with absolute pitch

completed

Dr Lorenz, Kathrin Optimization	of	the	labeling	efficiency	of	pseudo-continuous	
Arterial Spin Labeling (pCASL) for the measurement of cerebral 
perfusion

completed

Dr Metere, Riccardo Investigating brain tissue mMicrostructure using quantitative 
magnetic resonance imaging

completed

Movahedian Attar, 
Fakhereh

Identification	and	characterization	of	superficial	white	matter	
structures using non-invasive MRI

progressed

Rose, Daniel Informing neural mass models progressed

Podranski, Kornelius Improved processing of high-resolution multi parameter maps progressed

Schmidt, Jochen Quantitative	transverse	relaxation	mapping	at	ultra	high	field	in	
human subcortical, grey matter and white matter structures.

orientation

Vaculciakova, Lenka Ultra high resolution mapping of cortical myelination using 
quantitative MRI

orientation

Waschke, Johannes Analysis of histological data orientation

Zarubin, Georgy Development of a tACS-EEG closed loop system in order to  
understand and utilize the neuromodulatory role of tACS

final

Zoraghi, Mahsa Modeling and characterization of the cortical layer geometry 
using neo-hookean hyperelastic theory

progressed
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Faculty

Module I: Language and Communication 
Professor A. D. Friederici (since 2009)

MPI CBS, Dept of Neuropsychology

PD Dr D. Sammler (since 2013)

MPI CBS, Dept of Neuropsychology

PD Dr G. Hartwigsen (since 2016)

MPI CBS, LMRG “Cognition and Plasticity”

Professor D. Saur (since 2016) 

LU, Dept of Neurology

Professor J. Jescheniak (since 2009)

LU, Dept of Cognitive Psychology

Professor E. Schröger (since 2009)

LU, Dept of Cognitive and Biological Psychology

Dr C. Maennel (since 2019)

MPI CBS, Dept of Neuropsychology, RG  
“Early Language Acquisition”

Dr M. A. Skeide (since 2019)

MPI CBS, Dept of Neuropsychology

Dr L. Meyer (since 2018)

MPI CBS, MPRG “Language Cycles“

Professor K. von Kriegstein (2012–2017)

MPI CBS, MPRG “Neural Mechanisms of Human 
Communication“

Module II: Cognitive and Affective Neuroscience 
Dr R. G. Benoit (since 2016)
MPI CBS, MPRG “Adaptive Memory”

Professor S. Höhl (2016-2018)
MPI CBS, MPRG “Early Social Cognition”

Professor C. F. Doeller (since 2018)
MPI CBS, Dept of Psychology

Dr D. S. Margulies (2012-2017)
MPI CBS, MPRG “Neuroanatomy & Connectivity”

Professor V. Engert (since 2016)
MPI CBS, Dept of Social Neuroscience

Professor K. Musholt (since 2018)
LU, Dept of Philosophy

Dr M. Garvert (since 2018)
MPI CBS, Dept of Psychology

PD Dr J. Sacher (since 2016)
MPI CBS, Minerva/Branco Weiss Fellowship Group   
EGG (Emotions & neuroimaGinG)-Lab

Professor D. Haun (since 2016)
MPI EVA, Dept of Comparative Cultural Psychology

Professor M. L. Schroeter (since 2012)
UL, Day Clinic of Cognitive Neurology, and
MPI CBS, Dept of Neurology

Dr M. N. Hebart (since 2019)
MPI CBS, MPRG “Vision and Computational Cognition”

Professor T. Singer (2012–2018)
MPI CBS, Dept of Social Neuroscience
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Module III: Basic and Clinical Neuroscience
Professor I. Bechmann (since 2012)
LU, Institute for Anatomy

Professor R. Rübsamen (2009-2018)
LU, Dept of General Zoology and Neurobiology

Professor J. Classen (since 2012)
LU, Dept of Neurology

Professor M. Schönwiesner (since 2016)
LU, Dept of General Zoology and Neurobiology

Dr F. Eippert (since 2018)
MPI CBS, MPRG “Pain Perception“

Professor P. Schönknecht (2009-2018)
LU, Clinic and Polyclinic of Psychiatry

PD Dr S. Geyer (since 2009)
MPI CBS, Dept of Neurophysics, RG  
“Anatomical Analysis of the Organization of the  
Human and Non-Human Primate Brain”

Professor A. Villringer (since 2009)
MPI CBS, Dept of Neurology

Professor U. Hegerl (2009-2019)
LU, Clinic and Polyclinic of Psychiatry

Professor K. von Klitzing (since 2009)
LU, Clinic and Polyclinic of Children and Youth  
Psychiatry

Professor H. Obrig (since 2009)
LU, Day Clinic of Cognitive Neurology, and MPI CBS, 
Dept of Neurology

PD Dr A. V. Witte (since 2018)
MPI CBS, Dept of Neurology

Professor P. Ragert (since 2016)
LU, Dept of Movement and Training

Module IV: Neuroimaging Physics and Signal Processing 
Professor M. Bogdan (since 2012)
UL, Dept of Computer Engineering

Professor H. E. Möller (since 2009)
MPI CBS, “Nuclear Magnetic Resonance” Unit

Professor J. Haase (since 2009)
UL, Dept of Magnetic Resonance of Complex Quantum 
Solids

Professor K. Mueller (since 2009)
MPI CBS, “Nuclear Magnetic Resonance” Unit

Professor M. Hlawitschka (since 2012)
HTWK, Computer Graphics

PD Dr V. Nikulin (since 2017)
MPI CBS, Dept of Neurology, RG “Neural Interactions 
and Dynamics”

Dr E. Kirilina (since 2018)
MPI CBS, Dept of Neurophysics

Professor G. Scheuermann (since 2009)
UL, Dept of Image Processing

Professor T. R. Knösche (since 2009)
MPI CBS, “Brain Networks“ Unit

Professor R. Valiullin (since 2018)
UL, Felix Bloch Institute für Solid State Physics 

Dr B. Maess (since 2009)
MPI CBS, “Brain Networks” Unit

Professor N. Weiskopf (since 2016)
MPI CBS, Dept of Neurophysics

Please note: MPRG = Max Planck Research Group, LMRG=Lise Meitner Research Group
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Structure of the Graduate School
The International Max Planck Research School on 
Neuroscience of Communication: Function, Structure, and 
Plasticity (IMPRS NeuroCom) focuses on the functional, 
structural, and neural plasticity foundations of the neuro-
science of human communication, through an integrative 
and interdisciplinary approach. The overriding goal of this 
programme is to train doctoral researchers in the multidis-
ciplinary aspects of cognition, psychology, neuroscience, 
computer science, and neurophysics. 

The school offers an innovative, interdisciplinary, and in-
ternational research environment.Besides introducing be-
havioural methodology, the programme draws on power-
ful modern neuroimaging techniques such as functional 
and structural magnetic resonance imaging (MRI), elec-
troencephalography (EEG), magnetoencephalography 
(MEG), near-infrared spectroscopy (NIRS), and transcra-
nial magnetic stimulation (TMS). The breadth of these 
tools works toward our aim of understanding the brain in 
all its complexity and functionality. There is a strong in-
teraction between doctoral projects focusing on neuro-

scientific	methodologies	and	those	focusing	on	cognitive	
science, which is supported by the school’s infrastructure 
and facilities. 

Research Topics
Research projects and teaching are assigned to four  
modules:
1. Language and Communication
2. Cognitive and Affective Neuroscience
3. Basic and Clinical Neuroscience
4. Neuroimaging Physics and Signal Processing

Fundamental knowledge covering all four modules is im-
parted in the form of lecture series, courses, and semi-
nars. This provides a comprehensive foundation for con-
ducting doctoral research in neuroscience, and opens up 
horizons for potential interdisciplinary approaches. The 
curriculum not only includes lectures, courses, and semi-
nars, but also colloquia, an annual summer school, and an 
exchange	program	in	the	final	year.

Admission to the School
Every year new doctoral researchers with a variety of pro-
fessional backgrounds are recruited. In the context of each 
recruitment period we receive about 300 applications, of 
which	ca.	 7%	get	 admitted	 to	 the	graduate	 school.	This	
rate illustrates that admission to the school is highly com-
petitive. Doctoral researchers, who hold a PhD position 

with one of the faculty members, can also apply to IMPRS 
NeuroCom throughout the year. As with all candidates, 
students entering via this route must pass an admission 
interview, attended by at least three faculty members.

IMPRS NeuroCom
MPI for Human Cognitive and Brain Sciences
Stephanstrasse 1A, 04103 Leipzig, Germany
Phone: +49 341 9940 2261
Fax: ++49 341 9940 2221
Imprs-neurocom@cbs.mpg.de
http://imprs-neurocom.mpg.de

Spokesperson
Professor Arno Villringer  
(since 2013)

Director, Department of Neurology 
Email: villringer@cbs.mpg.de

Coordinator
Dr Veronika Krieghoff  

Email: vkrieghoff@cbs.mpg.de

International	Office
Susann Glasewald  

Email: glasewald@cbs.mpg.de

Coordination Team
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Teaching Curriculum

Lecture Series 
The PhD curriculum combines opportunities for outstand-
ing research with excellent teaching to ensure that doc-
toral	 researchers	 are	 highly	 qualified	 for	 a	 successful	
career in relevant areas of Neuroscience. Courses held 
in 2017–2019 included modules on Basic and Clinical 
Neuroscience, Physics of Neuroimaging, Language and 
Communication, Neuroplasticity, Social, Cognitive, and 
Affective Neuroscience, and Advanced Statistics. Lecture 
series were conducted by members of the IMPRS faculty 
from all involved institutions in Leipzig as well as by ex-
ternal guest speakers. In addition, several workshops on 
Matlab took place. 

IMPRS NeuroCom Summer School
As a special highlight of our graduate program, IMPRS 
NeuroCom offers an annual Summer School. Every third 
year this event is hosted by our partner institute, the 
Institute of Cognitive Neuroscience at University College 
London. During the other years the Summer School takes 
place in Leipzig at MPI CBS. 
The main topic of the most recent Summer School, which 
took place from 16-19 June 2019 at MPI CBS in Leipzig, 
was Sex Differences and the Brain. Further topics includ-
ed: Language and Communication, Cracking the Code of 
Cognition, and Computational Neuroscience. On the one 
hand, the summer school offers theoretical input through 
lectures taught by internationally renowned speakers. On 
the other hand, students are provided many opportunities 
for direct exchange with the speakers, for example, during 
a panel discussion or the ‘meet the speakers’ lunch, which 
are offered for each session. In addition, junior scientists 
had the chance to present their research in the form of 
posters. The latest program was rounded off by several 
hands-on workshops, social activities, and the award of 
the poster prize. 

Transferable Skills Training
In order to assist students in developing and broaden-
ing essential research skills, the IMPRS NeuroCom of-
fered transferable skills seminars. These have includ-
ed the annual workshop for new doctoral researchers 
on Time and Project Management, as well as an annual 
workshop on Good Scientific Practice. Further workshop 
topics were Scientific Writing, Grant Proposal Writing 
and Career Planning. Together with the other IMPRSs 
from Leipzig. IMPRS NeuroCom hosted a workshop on 
Mental Strategies for doctoral researchers conducted by 
Techniker Health Insurance. As IMPRS NeuroCom is a 
recognised graduate school at Research Academy Leipzig 
(ral), the umbrella organisation of all graduate schools at 
Leipzig University, our doctoral researchers have the pos-
sibility to attend further transferable skills courses there. 
Furthermore, international students were encouraged and 
financially	 supported	 to	 participate	 in	German	 language	
courses.

Retreat
Supported with a grant from the Max Planck Foundation, 
IMPRS	NeuroCom	had	 its	first	 retreat	 in	May	2018.	This	
three-day-event took place at the Harnack House in Berlin 
and was attended by one faculty member of each IMPRS 
module, the IMPRS spokesperson, the IMPRS co-ordi-
nator as well as by most doctoral researchers of IMPRS 
NeuroCom. The junior researchers presented their work in 
the form of talks and posters. In addition, alumni of IMPRS 
and MPI CBS presented their career pathways and chat-
ted with current IMPRS doctoral researchers in a speed 
meeting event. The IMPRS retreat was so well received by 
the IMPRS doctoral researchers that we decided to have 
an IMPRS NeuroCom Retreat again this year (November 
2019, Weimar). 
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MPS Cog: A Brand New Doctoral Programme in Germany
In the international competition for the most high caliber 
doctoral students, several German research institutions 
are in very good standing. However, some of the lead-
ing US and UK universities such as Harvard, Princeton, 
Oxford, or Stanford still have advantages due to their con-
siderably larger faculties and regular entry at Bachelor lev-
el. Thus, to overcome this drawback the president of the 
Max Planck Society, Martin Stratmann, suggesting creat-
ing nationwide joint schools which integrate all leading ex-
perts	across	Germany	 in	certain	fields	from	Max	Planck	
institutes, universities, and other non-university research 
institutions. Together with the former Federal Research 
Minister Johanna Wanka and the former President of the 
German Rectors’ Conference Horst Hippler, the concept 
was further developed and a competitive call was initiated 
for the foundation of three pilot schools. Arno Villringer 
was the leading PI for the proposed “Max Planck School of 
Cognition”,	formed	the	school’s	faculty,	and	finally	present-
ed the proposal, which was selected as one of the three 
pilot	schools.	MPS	Cog	is	funded	during	the	five-year	pilot	
phase by the German Federal Ministry of Education and 
Research (BMBF) in collaboration with the Max Planck 
Society.
MPS Cog is an interdisciplinary and bespoke doctoral 
programme that offers exceedingly bright doctoral candi-
dates the tools to gain a superior grasp on the different 
methods	and	approaches	used	in	the	rapidly	evolving	field	
of cognition. Our programme is characterised by the pas-
sion to better understand both human and animal cogni-
tion, and “mental phenomena” potentially occurring in 
non-biological	systems	and	agents	(artificial	intelligence).	
The	official	 inauguration	of	the	Max	Planck	Schools	and	
welcoming	of	the	first	doctoral	candidates	took	place	on	
11 September 2019 in Berlin. The event was supported 
by the presence of the Federal Minister for Education 

and Research, Anja Karliczek, former president of the 
German Rectors’ Conference Horst Hippler, the President 
and the Vice President of the Max Planck Society Martin 
Stratmann and Ferdi Schüth, respectively, Nobel Prize win-
ner Stefan Hell, world-leading pioneers in functional neu-
roimaging Bruce Rosen and Jonathan Cohen, as well as 
members of various institutions across a wide range of 
career stages.

Main Goals
MPS Cog bundles the best cognition researchers from 
14 different universities (in addition to University College 
London	as	our	international	partner)	and	scientific	organi-
sations in a unique setting, thereby 1) providing doctoral 
candidates with a sophisticated repertoire of different 
methods	and	approaches	used	in	the	rapidly	evolving	field	
of cognition; 2) preparing the next generation of leading 
researchers	 in	 the	 interdisciplinary	 field	 of	 cognition;	 3)	
developing	 new	 ways	 of	 defining	 cognition,	 philosophy,	
and	artificial	intelligence,	fostering	a	new	language	of	cog-
nition and intelligence across many different disciplines; 
and 4) drawing more international talent to Germany as 
well as convincing outstanding German reseachers to 
study at home.

MPS Cog Faculty
MPS Cog is comprised of an outstanding and world re-
nowned cluster of approximately 50 fellows from diverse 
scientific	backgrounds	but	with	overlapping	research	inter-
ests. Our fellows come from 29 partner organisations in-
cluding Max Planck institutes, universities, the Helmholtz 
Association and Fraunhofer-Gesellschaft. 

Fellows

Professor Katrin Amunts
Heinrich Heine University Düsseldorf & 
Forschungszentrum Jülich, Germany

Professor Hans-Jochen Heinze 
Otto von Guericke University, Magdeburg, Germany 

Professor Elisabeth Binder 
Max Planck Institute of Psychiatry, Munich, Germany

Professor Ralph Hertwig 
Max Planck Institute for Human Development, Berlin, 
Germany

Professor Nicole Boivin 
Max Planck Institute for the Science of Human History, 
Jena, Germany

Professor Jürgen Jost 
Max Planck Institute for Mathematics in the Sciences, 
Leipzig, Germany

Professor Michael Brecht 
Bernstein Center for Computational Neuroscience, 
Humboldt University Berlin & Charité University 
Medicine Berlin, Germany

Professor Gerd Kempermann 
Technical University of Dresden & German Center for 
Neurodegenerative Diseases, Dresden, Germany
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Professor Christian Büchel 
University Medical Center Hamburg-Eppendorf, 
Germany

Professor Peter König 
Osnabrück University, Germany

Professor Peter Dayan
Max Planck Institute for Biological Cybernetics, 
Tübingen, Germany

Professor Arthur Konnerth 
Technical University of Munich, Germany

Professor Christian Doeller 
MPI CBS, Leipzig, Germany

Professor Ulman Lindenberger 
Max Planck Institute for Human Development, Berlin, 
Germany

Professor Emrah Düzel 
Otto von Guericke University Magdeburg & German 
Center for Neurodegenerative Diseases, Magdeburg, 
Germany

Professor Nikos Logothetis 
Max Planck Institute for Biological Cybernetics, 
Tübingen, Germany

Professor Isabel Dziobek 
Humboldt University Berlin, Germany

Professor Antje S. Meyer 
Max Planck Institute for Psycholinguistics, Nijmegen, 
NL

Professor Simon B. Eickhoff 
Heinrich Heine University Düsseldorf & 
Forschungszentrum Jülich, Germany

Professor Klaus-Robert Müller 
Technical University of Berlin, Germany

Professor Christoph Engel 
Max Planck Institute for Research on Collective Goods, 
Bonn, Germany

Professor Michael Pauen 
Berlin School of Mind and Brain & Humboldt University 
Berlin, Germany

Professor Peter Falkai 
Ludwig Maximilian University Munich, Germany

Professor Michael Petraglia 
Max Planck Institute for the Science of Human History, 
Jena, Germany

Professor Simon E. Fisher 
Max Planck Institute for Psycholinguistics, Nijmegen, 
NL

Professor David Poeppel 
Max Planck Institute for Empirical Aesthetics, Frankfurt/
Main, Germany

Professor Angela D. Friederici 
MPI CBS, Leipzig, Germany

Professor Brigitte Röder 
University of Hamburg, Germany

Professor Pascal Fries 
Ernst Strüngmann Institute (ESI) for Neuroscience in 
Cooperation with the Max Planck Society, Frankfurt/
Main, Germany

Professor Caroline Rowland 
Max Planck Institute for Psycholinguistics, Nijmegen, 
NL & University of Liverpool, UK

Professor Russell Gray 
Max Planck Institute for the Science of Human History, 
Jena, Germany 

Professor Constance Scharff 
Free University Berlin, Germany

Professor Onur Güntürkün 
Ruhr University Bochum, Germany

Professor Klaus Scheffler 
Max Planck Institute for Biological Cybernetics, 
Tübingen, Germany

Dr Philipp Gunz 
Max Planck Institute for Evolutionary Anthropology, 
Leipzig, Germany 

Professor Erich Schröger 
Leipzig University, Germany

Professor Patrick Haggard 
University College London, Institute of Cognitive 
Neuroscience, UK

Professor Arno Villringer 
MPI CBS, Leipzig, Germany

Professor Peter Hagoort 
Max Planck Institute for Psycholinguistics, Nijmegen, 
NL

Professor Melanie Wald-Fuhrmann 
Max Planck Institute for Empirical Aesthetics, Frankfurt/
Main, Germany
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Structure of the Programme
MPS Cog offers a four-year doctoral programme. The 
programme	 begins	 with	 an	 orientation	 year	 (first	 year)	
to equip the doctoral candidates (hereafter candidates) 
with necessary interdisciplinary knowledge and hands-
on research lab experience via three rotations in part-
nering laboratories. The orientation year will also aid 
candidates to make an informed decision about which 
faculty researcher(s) they would like to pursue their re-
search questions with for the following three years. Given 
the collaborative and interdisciplinary nature of the MPS 
Cog doctoral programme, candidates are encouraged to 
select	fellows	with	complementary	research	fields	as	co-
supervisors.
During	 the	 first	 year,	 there	 is	 also	 an	 essential	 empha-
sis on teaching. Candidates attend online courses dur-
ing which the fundamentals on the following topics are 
covered: Cognitive Science, Functional Neuroanatomy 
and Neurophysiology, Clinical Neuroscience, Artificial 
Intelligence and Intelligent Systems, Philosophy of Mind 
and Ethics, Methods in Cognitive Neurosciences, Basics in 
Molecular Neurobiology and Genetics, Experimental Design 
and Statistics. To further elaborate on these online cours-
es, candidates attend Cognition Academies (i.e., class-
room weeks) in which these topics are presented in great-

er	 detail.	There	 are	 three	of	 such	academies	 in	 the	first	
year, two academies in the second to third years, and a 
final	academy	in	the	fourth	year.	All	academies	will	have	a	
duration of two weeks, except for the Welcome Academy 
in	 the	 first	 year	 that	 has	 a	 duration	 of	 one	 week.	 The	
Welcome Academy that took place in Berlin from 9–12 

Schematic illustration of the structure of the doctoral programme at the Max Planck School of Cognition

Doctoral	 candidates	 attending	 a	 lecture	 during	 the	 first	 Cognition	
Academy (September 2019)

Online courses
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Professor Daniel Haun 
Max Planck Institute for Evolutionary Anthropology, 
Leipzig, Germany

Professor Nikolaus Weiskopf 
MPI CBS, Leipzig, Germany

Professor John-Dylan Haynes 
Bernstein Center for Computational Neuroscience, 
Humboldt University Berlin & Charité University 
Medicine Berlin, Germany 

Professor Thomas Wiegand 
Fraunhofer Institute for Telecommunications, Heinrich 
Hertz Institute & Technical University of Berlin, Germany

Professor Hauke R. Heekeren 
Free University Berlin, Germany 

Professor Carsten T. Wotjak 
Max Planck Institute of Psychiatry, Munich, Germany

Professor Christine Heim 
Charité University Medicine Berlin, Germany
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September 2019 included presentations from several out-
standing MPS Cog fellows, two exceptional international 
guests, Professor Bruce Rosen and Professor Jonathan 
Cohen, as well as presentations by the candidates along 
with soft skill trainings.
The	first	year	ends	with	an	evaluation	of	the	students	that	
will determine if they can advance to the doctoral research 

phase (i.e., second to fourth year). This evaluation will con-
sider	several	points:	confirmation	of	three	lab	rotations,	fi-
nal evaluation of each of those rotations by the respective 
fellow,	final	assessment	of	performance	in	each	of	the	on-
line courses by the respective tutor, and the commitment 
from a fellow(s) who agrees to (co-)supervise the doctoral 
work of the student.

First Cohort of Doctoral Candidates & Zero-Year Students/Mentors
In	the	first	recruitment	phase	(October–December	2018),	
a total of 171 applications were received. From those, 
39 applicants were invited for interviews with fellows in 
Berlin. A total of thirteen candidates (8 male and 5 female) 
from	eight	different	countries	were	admitted	 to	 the	first	
cohort of the MPS Cog doctoral programme. Doctoral 
candidates	 receive	a	generous	stipend	 for	 the	first	 year	
and will receive a full-time contract for the remaining three 
years of the programme.
All	thirteen	candidates	have	started	their	first	lab	rotation	
in October 2019. The second lab rotation will start at the 
end of January 2020 and the third one in May 2020. Each 
rotation will take an average of three months.

First	 cohort	 of	 doctoral	 candidates	 at	 the	 first	 Cognition	Academy	 
(9–12 September 2019)

List of doctoral candidates and respective research background

Doctoral candidates
(Surname, name)

Research Background

Bassam, Hassan Modelling Biological Complexity/Mathematics

Chormai, Pattarawat Data Science

Contier, Oliver Psychology

Coy, Nina Psychology

Dörfler, Moritz Mind and Brain

Fourcade, Antonin Social Cognitive and Affective Neuroscience

Grujičić,	Bojana Mind and Brain

Matić,	Karla Psychology (Theory and Research)

Nickl, Pietro* Philosophy

Pettini, Leonardo Mind and Brain

Scholl, Carolin Artificial	Intelligence

Stinson, Caedyn Social and Affective Cognitive Neuroscience

Tenderra, Rebekka Neural and Behavioral Sciences
* Candidate who entered the doctoral programme with a bachelor degree. This candidate will perform all academic requirements from 
MPS	Cog	first	year	and	simultaneously	finish	his	master	at	the	Berlin	School	of	Mind	and	Brain,	Humboldt	University	Berlin.
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Doctoral candidates during the poster session with the zero-year students and mentors.
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MPS Cog has also appointed 16 zero-year students (i.e., 
doctoral candidates at the end of their research phase) and 
three mentors (i.e., early postdoctoral researchers). These, 
nominated	by	MPS	Cog	fellows,	help	us	to	set	up	specific	
aspects of the school and the doctoral programme. Their 
tasks are to provide advice on how to improve the qual-
ity of the (e-)courses, to personally welcome and orient 
the candidates to the respective institutes or universities 

and city during a lab rotation, to encourage prospective 
students to apply via advertisement at conferences and 
workshops, and to discuss academic and non-academic 
topics with candidates.

Application

During recruitment phase, candidates can apply with a 
Bachelor’s or a Master’s degree in areas related to cog-
nition	such	as	artificial	 intelligence,	 (cognitive)	neurosci-

ence, genetics, linguistics, mathematics, neurobiology, 
neurology, philosophy, psychiatry, and psychology.
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Media and 
Marketing Manager
 Matthias Bolz 
Email: bolz@cbs.mpg.de

Scientifi	c	Coordinator
Dr   Natacha  Mendes 

Email: mendes@cbs.mpg.de

E-learning	Offi	cer
Dr  Samyogita Hardika 

Email: hardikar@cbs.mpg.de

Learning Designer
 Tomoko Koda 

Email: koda@cbs.mpg.de

International Affairs 
Offi	cer	&	Admin	
Support 
 Nicole Lorenz
Email: lorenz@cbs.mpg.de

Curriculum	Offi	cer
Dr  Ewa Koper 

Email: koper@cbs.mpg.de

E-tutor
Dr  Derek V. M. Ott 

Email: ottd@cbs.mpg.de

Financial Coordinator
 Marcel Lorenz 

Email: malorenz@cbs.mpg.de

Coordination Team in Leipzig

Spokesperson
Professor  Arno Villringer 
Director, Department of Neurology

Email: villringer@cbs.mpg.de
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