The robustness of repetition-based rule learning in infants: a meta-analysis of fNIRS language studies

Jessica Gemignani^{1,2}, Judit Gervain^{1,2}

¹ Dipartimento di Psicologia dello Sviluppo e Socializzazione, Università di Padova, Padova, Italy ² Integrative Neuroscience and Cognition Center, CNRS & Université de Paris, Paris, France

INTRODUCTION

- Infants can learn simple repetition-based structures in the form of AAB and ABB patterns (Marcus 1999, Gervain et al 2008, 2012)
- Rule-based learning has a pivotal role in language acquisition
 The neural foundations of this mechanism have been long investigated with functional near-infrared spectroscopy (fNIRS), but to date, a
- quantitative analysis of its effect size is missingThere are several possible sources of variability, including individual
- characteristics (sex, age)

METHODS: DATA

Eight fNIRS studies on repetition-based learning (published and unpublished) conducted between 2008 and 2018 in three different labs

ID	Lab	#trials/cond	Age group	Device	Fs (Hz)	М	F
1	Paris	14	Newborns	NIRx	10	9	15
2	Paris	3	6 months	NIRx	15.62	10	8
3	Paris	12	Newborns	NIRx	15.62	12	12
4	Trieste	7	Newborns	Hitachi	10	8	3
5	Paris	7	6 months	NIRx	15.62	5	8
6	Paris	7	6 months	NIRx	15.62	8	7
7	Vancouver	14	Newborns	Hitachi	10	13	9
8	Trieste	14	Newborns	Hitachi	10	10	12
Total						75	74

Stimuli: Auditory adjacent repetition sequences (either initial or final, AAB/ABB) vs random control sequences (ABC) **Optodes arrangement:** Frontal, temporal ROIs (bilateral)

METHODS: ANALYSIS

WORK OBJECTIVES

- 1. Evaluate effect size of repetition-effect measured by NIRS
- 2. Quantify its variability across studies, brain regions, age groups
- 3. Explore sex differences as potential source of variability

RESULTS

Individual level analysis:

No significant effect of sex
 Significant Age X Hemisphere interaction (F(1, 366)= 5.81, p<0.05)

CONCLUSIONS

- Repetition-effect in infants as measured by NIRS is robust and replicable (d_z= 0.26 [-0.01 0.53] in the left temporal area)
- Consistently with expectations, in the left hemisphere newborns show larger effect than six-months-olds
- Rule-learning shows no sex differences: differences in language skills often reported are likely to be associated to other differences
- Variability can likely be ascribed to several factors, both related to the experimental settings (lab practices, different hardware, experience of the experimenter) and to physiology (variability of infant hemodynamic responses), to be further explored.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the ERC Consolidator Grant "BabyRhythm 773202" awarded to Judit Gervain.