

¹Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany, ⁴Berlin School of Mind and Brain, Humboldt University, Berlin, Germany, ⁵Department for Psychiatric University, Leiden, The Sychology - Cognitive Psychology Unit, Leiden University, Leiden, The Sychology - Cognitive Psychology Unit, Leiden University, Leiden, The Sychology - Cognitive Psychology Unit, Leiden University, Leiden, The Sychology - Cognitive Psychology - Cognitive Psychology Unit, Leiden University, Leiden, The Sychology - Cognitive Psychology - Cognitive Psy Netherlands, ⁷Leiden Institute for Brain & Cognition, Leiden, Netherlands, ⁸Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, ⁹Bernstein Center for Computational Neuroscience, Berlin, Germany

Introduction

OCD (Obsessive Compulsive Disorder) is disabling psychiatric conditioning, with a prevalence of 2%-3% in the general population. OCD is characterized by obsessions (persistent and intrusive thoughts) and compulsions (rituals or repetitive behaviour performed to reduce the anxiety caused by obsessions). The pathophysiology of OCD was often conceptualized via the cotrico-striato-thalamo-cortical model (Milad and Rauch, 2012); many studies presented volumetric and connectivity changes in those regions among OCD patients. A meta-analysis focusing on resting-state functional MRI (rs-fMRI) seed analysis (Gürsel et al., 2018) found altered connectivity inside the Default Mode Network (DMN), Salience (SN), and Frontoparietal (FPN) networks as well as hypoconnectivity between these three networks. Additionally, the Fronto-Striatal-Circuitry presented general dysconnectivity (no specific direction of connectivity change).

We aimed to test the replicability of the metaanalysis findings in OCD patients.

Methods

A total of 64 participants completed 13 minutes of resting-state fMRI 3T with eyes open (27 OCD patients and 37 age, sex, and education matched healthy controls, HC). Seed to voxel (whole brain) analyses were conducted for 30 seeds based on the reported findings in Gürsel's meta-analysis (figure 1, table 1). Five seeds were created with five-diameter spheres based on the coordinates of the significant groupdifference clusters. In addition, 15 seeds were constructed to represent FPN, DMN, SN from the CONN ICA network (Whitfield-Gabrieli et al., 2012), and ten seeds to represent the thalamus and the striatum based on the Harvard-Oxford Atlas sub-Cortical Structural Atlas (Caviness et al., 1996). For each seedto-voxel analysis, we performed separate second-level GLMs to compare OCD with controls, including maximum motion as a covariate via the CONN toolbox v.19c. We considered findings significant at FWEcorrected p-values \leq 0.05 at cluster and voxel level. Moreover, we probed the robustness of our findings using two different parcellation approaches 1) utilizing the DiFuMo functional atlas (Dadi et al., 2020) and 2) using Independent Component Analysis (ICA) as datadriven network parcellation to use as seeds.

Functional connectivity alterations between the DMN and occipital cortex in patients with OCD

Tal Geffen¹, Jonathan Smallwood², Carsten Finke^{3,4}, Sebastian Olbrich⁵, Zsuzsika Sjoerds^{6,7}, Florian Schlagenhauf^{1,8,9}

Figure 1 & Table 1: 30 seeds for the seed to voxel analyses

	seed	к	source
1	Thalamus r	24,274	Harvard-Oxford
2	Thalamus I	24,134	Harvard-Oxford
	Striatum related seeds		
3	Caudate r	17126	Harvard-Oxford
4	Caudate I	16087	Harvard-Oxford
5	Putamen r	20057	Harvard-Oxford
6	Putamen l	19805	Harvard-Oxford
7	Pallidum r	9932	Harvard-Oxford
8	Pallidum l	9565	Harvard-Oxford
9	Accumbens r	4431	Harvard-Oxford
10	Accumbens I	4699	Harvard-Oxford
	Default Mode Network (DMN) related seeds		
11	Medial Pre-Frontal Cortex (MPFC)	1346	ICA_CONN
12	Lateral Parietal (I) (LPI)	1041	ICA_CONN
13	Lateral Parietal (r)	1326	ICA_CONN
14	Posterior Cingulate Cortex (PCC)	4833	ICA_CONN
	Salience Network related seeds		
15	Anterior Cingulate Cortex (ACC)	1063	ICA_CONN
16	Insula I	446	ICA_CONN
17	Insula r	338	ICA_CONN
18	Rostral Pre-Frontal Cortex I (RPFC I)	1166	ICA_CONN
19	Rostral Pre-Frontal Cortex r (RPFC r)	581	ICA_CONN
20	supramarginal gyrus I (SMG I)	233	ICA_CONN
21	supramarginal gyrus r (SMG r)	284	ICA_CONN
	Frontal Parietal Network (FPN) related seeds		
22	Lateral Pre-Frontal Cortex I (LPFC I)	1703	ICA_CONN
23	Lateral Pre-Frontal Cortex r (LPFC r)	1758	ICA_CONN
24	Posterior Parietal Cortex (PPC I)	832	ICA_CONN
25	Posterior Parietal Cortex (PPC r)	837	ICA_CONN
	A meta-analysis (Gürsel et al., 2018) related seeds		
26	Anterior Cingulate Cortex (ACC as part of DMN)	81	Meta-analysis
27	Medial Pre-Frontal Cortex (MPFC as part of DMN)	81	Meta-analysis
28	Limbic (as part of FPN)	81	Meta-analysis
29	middle frontal gyrus (as part of FPN)	81	Meta-analysis
30	Right Supramarginal Gyrus (as part of SN)	81	Meta-analysis

Highly significant connectivity alterations in OCD

Significant connectivity alterations in OCD: Significant connected clusters to LP r (OCD>control) after correction for multiplied comparisons and number of ROIs (p_{FWE}*30 ROIs<0.05): [+24 -54 +40] (sLOC_r, PREC) hyperconnectivity indicated a pattern of stronger positive connectivity in the OCD group ; [-34 -94 -04] (OP_I, iLOC_I) hypoconnectivity indicated a pattern of stronger negative (i.e., inverse) connectivity in the OCD group. MNI Coordinates (results were similar to bilateral seed LP I).

Seed	Peak cluster (x, y, z)	к	size pFWE	pFWE* 30	Cluster location	T -value
00444				seeds		
DIVIN					-	
ateral Parietal eft (LP 1)	(-32 -94 -2)	677	0.000	0.000	OP I (Occipital Pole Left); iLOC I (Lateral Occipital Cortex, inferior division Left)	-5.28
	(+26 -60 +50)	195	0.035	NS	sLOC r (Lateral Occipital Cortex, superior division Right); Precuneous (Precuneous Cortex)	4.66
ateral	(-34-94-04)	486	0.000	0.006	OP I (Occipital Pole Left); iLOC I (Lateral Occipital Cortex, inferior division Left)	-4.88
arietal light (LP_r)	(+24 -54 +40)	450	0.000	0.01	sLOC r (Lateral Occipital Cortex, superior division Right); Precuneous (Precuneous Cortex)	5.09
	(-28 -36 +42)	203	0.028	NS	SPL I (Superior Parietal Lobule Left); sLOC I (Lateral Occipital Cortex, superior division Left)	4.92
osterior ingulate ortex PCC)	(+02 -82 +34)	181	0.041	NS	Cuneal r (Cuneal Cortex Right); Cuneal I (Cuneal Cortex Left); OP I (Occipital Pole Left)	-4.76
SN						
nterior ingulate ortex ACC)	(+40 -86 -12)	353	0.002	NS	iLOC r (Lateral Occipital Cortex, inferior division Right); OP r (Occipital Pole Right)	4.9
nsula_l	(+50 -74 -06)	265	0.007	NS	iLOC r (Lateral Occipital Cortex, inferior division Right)	4.80
nsula_r	(+22 -54 +20)	291	0.005	NS	Precuneous (Precuneous	-5.02

DMN and the SN. After additional correction for the number of seed-to-voxel analyses, three clusters based on DMN seeds remained significant: (LP_r/l) to the left occipital pole and LP_r to a cluster comprised the right superior Lateral Occipital Cortex (sLOC_r) and the precuneus.

Participant's psychopathology and demographic measures

Demosale:-	Mear			
Demographic	HC	OCD	p-value	
Ν	33	24		
Age	35.7 ± 11.5	37.2 ± 11.9	0.61	
Gender (M/F)	15/18	13/11	0.52	
Education level	3	3	0.64	
BDI	2.6±3	19.2±13.5	0.00	
STAI	32.1±5.9	47.2±12.8	0.00	
OCI	10.3 ± 9.8	29 ±13.1	0.00	
IQ_WST	107 ± 8.4	106 ± 9.5	0.68	
Y-BOCS	-	22.42 ± 7.6	-	

After default pre-processing seven participants were excluded due to quality assurance reports.

Mean (standard deviation) of demographic variables and questionnaires scores for OCD and control groups. BDI: Beck Depression Inventory; STAI: The State-Trait Anxiety Inventory; OCI: Obsessive-Compulsive Inventory; IQ_WST: Verbal IQ; Y-BOCS: Yale-Brown Obsessive-Compulsive Scale. Significant=p<0.05

Among OCD patients: positive Pearson correlation between connectivity measures between LP r and of [+24 -54 +40] to Y-BOCS compulsions scale (r = 0.43, p<0.05, N = 24).

Our findings replicated partly the meta-analysis findings Gürsel et al., specifically SN and DMN of hypoconnectivity, by using seeds based on the metaanalysis. We identified aberration between the SN and, in particular, the DMN to the visual network. This raises the question about the visual system's involvement in OCD symptoms and the abnormal connectivity of a unimodal region as the visual network to the multimodal DMN. Previous studies found evidence for decreased metabolic activities, abnormal connectivity, and volumetric changes in the left inferior parietal and parietal-occipital junction, suggesting the possible existence of visual processing deficits in OCD (Gonçalves et al., 2010). Our findings support those previous discoveries. Several studies (Ravindran et al., 2020; Stern et al., 2016) presented significant hyperconnectivity among OCD patients between DMN-related seeds and the visual cortex primary regions V1 and V2 after viewing or imagining an OCD related stimuli to evoke stress. Since the regions in which we found abnormal connectivity in our study during resting-state are similar, this raises the question of whether the abnormal emotion-related visual-to-DMN connectivity might point towards cognitive occupation with symptoms, also during our rest measure, in the absent of OCD threatening stimuli.

References:

Caviness V.S. (1996), 'MRIBased topographic parcellation of human neocortex: an anatomically specified method with estimate of reliability', Journal of Cognitive Neuroscience. Vol. 8, no.6, pp. 566-587. doi:10.1162/jocn.1996.8.6.566

Dadi K. (2020), 'Fine-grain atlases of functional modes for fMRI analysis', Neuroimage, vol. 221, 117126. doi:10.1016/j.neuroimage.2020.117126

Gonçalves, Ó. F., Marques, T. R., Lori, N. F., Sampaio, A., & Branco, M. C. (2010). Obsessive-compulsive disorder as a visual processing impairment. Medical hypotheses, doi:10.1016/j.mehy.2009.07.048 74(1), 107-109.

Gürsel, D.A. (2018), 'Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of restingstate functional connectivity', Neuroscience and Biobehavioral Reiews, vol. 87, pp. 151-160. doi:10.1016/j.neubiorev.2018.01.016

Ravindran, A., Richter, M., Jain, T., Ravindran, L., Rector, N., & Farb, N. (2020). Functional connectivity in obsessive-compulsive disorder and its subtypes. Psychological medicine, 50(7), 1173-1181. doi.org/10.1017/S0033291719001090

Stern, E. R., Muratore, A. F., Taylor, S. F., Abelson, J. L., Hof, P. R., & Goodman, W. K. (2017). Switching between internally and externally focused attention in obsessivecompulsive disorder: Abnormal visual cortex activation and connectivity. Psychiatry Research: Neuroimaging, 265, 87-97. doi.org/10.1016/j.pscychresns.2016.08.006

Whitfield-Gabrieli, S. (2012), 'Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks', Brain Connectivity, vol. 2, no. 3, pp 125-141. doi:10.1089/brain.2012.0073

For more details, please contact geffen.tal@charite.de

Discussion