Effects of memory load on the contralateral delay activity and induced alpha power in the EEG: studied with a virtual reality setup

Felix Klotzsche^{1,2}, Michael Gaebler^{1,2}, Arno Villringer^{1,2}, Werner Sommer^{1,3}, Vadim Nikulin¹, and Sven Ohl³

¹ Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Deutschland ² Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Germany ³ Humboldt-Universität zu Berlin, Department of Psychology, Germany

MIND AN BRAIN

klotzsche@cbs.mpg.de

Introduction

EEG markers of visual Short-Term Memory (vSTM) processes are well studied in conventional lab settings.

Contralateral Delay Activity (CDA)

(s) Leenders et al., 2016

Virtual Reality (VR) technology offers new possibilities to study these processes (e.g., in naturalistic settings),

VR combining but а EEG with headset measurements introduces new challenges. The weight of the headset and its contact with the electrodes can lead to

additional noise. The thereby lowered signal-to-noise ratio (SNR) might render the components of interest untraceable. Multivariate analysis approaches can help to increase the sensitivity of these measures.

Furthermore, VR offers a wide field of view, but vSTMcomponents in the EEG have mostly been studied at small eccentricities (<5°).

Research questions:

- Do we find **EEG markers of vSTM** when using a **VR headset** instead of a desktop monitor?
- Do they change when presenting the stimuli at **larger eccentricities** than previously studied?

Results

CDA amplitude varies with memory load but not with stimulus eccentricity

CDA per memory load

Lateralized alpha power varies neither with memory load nor with eccentricity

lateralized alpha power per **memory load**

ize Memory Array

per eccentricity

2B

Size Memory Array

+ 2

|2A

Memory load can be **decoded** from **alpha power** for all eccentricities

across all eccentricities

Memory load can be **decoded** from **voltage data** for all eccentricities

across all eccentricities

Top: Avg. decoding performance (ROC AUC) of the sliding classifier (log. regression) over time. **Bottom:** Spatial pattern weights of the classifier (normalized & averaged across subjects).

most discriminative CSP component.

References

Adam, K. C. S., Vogel, E. K., & Awh, E. (2020). Multivariate analysis reveals a generalizable human electrophysiological signature of working memory load. *Psychophysiology*, 57(12). https://doi.org/10.1111/psyp.13691 Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K. (2008). Optimizing Spatial filters for Robust EEG Single-Trial Analysis. *IEEE Signal Processing Magazine*, 25(1), 41–56. https://doi.org/10.1109/MSP.2008.4408441 Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., & Mushtaq, F. (2020). Studying human behavior with virtual reality: The Unity Experiment Framework. Behavior Research Methods, 52(2), 455-463. https://doi.org/10.3758/s13428-019-01242-0 Jas, M., Engemann, D. A., Bekhti, Y., Raimondo, F., & Gramfort, A. (2017). Autoreject: Automated artifact rejection for MEG and EEG data. NeuroImage, 159, 417–429. https://doi.org/10.1016/j.neuroimage.2017.06.030 Leenders, M. P., Lozano-Soldevilla, D., Roberts, M. J., Jensen, O., & De Weerd, P. (2018). Diminished Alpha Lateralization During Working Memory but Not During Attentional Cueing in Older Adults. Cerebral Cortex, 28(1), 21–32. https://doi.org/10.1093/cercor/bhw345 Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. https://doi.org/10.1038/nature02447

Discussion

- \checkmark We replicated the effects of memory load on CDA amplitude. Therefore, using a VR headset does not cause a detrimental decrease of the SNR.
- \checkmark We show this for **stimulus eccentricities of up to 14**°.
- ✓ A more sensitive, **multivariate decoding** approach confirmed these findings.

✓ We replicated the **lateralization of induced alpha power** in response to the cue and during memory retention.

✓ This alpha lateralization was modulated neither by memory load nor by stimulus eccentricity.

✓ Using **spatial filters** and a **multivariate classifier**, we could decode memory load from (unlateralized) alpha power for all eccentricities.