Alpha-Peak Parameters, 1/f Neuronal Noise, and Their Relation to Cognition in Elderly age

Elena Cesnaite1, Paul Steinfath1, Mina Jamshidi Idaji1, Tilman Stephani1, Deniz Kumral1, Stefan Haufe2, Christian Sander3,4, Tilman Hensch3,4, Ulrich Hegner4,5, Steffi Riedel-Heller4,6, Matthias Schroeter1,6, Veronica Witte1,6, Arno Villringer1,7, Vadim V. Nikulin1,8

1Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; 2Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3Department of Psychiatry and Psychotherapy, University of Leipzig, Germany; 4Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany; 5Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, Frankfurt, Germany; 6Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Germany; 7Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; 8Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Russian Federation

cesnaite@cbf.mpg.de

Aging is accompanied by:
- Decline of 1/f slope of the power spectral density (PSD)1
- Alpha peak frequency (IAF) slowing2
- Alterations of power in alpha (8 – 12 Hz) and slower frequency ranges (>7Hz)2,3
- Cognitive decline2

However, consistent evidence regarding age-related alterations in 1/f slope and slow wave power in the elderly population is lacking. It is also unclear how all of these measures relate to cognition.

Introduction

Methods

1. Preprocessing of the rsEEG data: 5 min of recordings with high vigilant state
2. PSD was estimated with Welch’s approach (4s windows)
3. De-trending of the original signal (A)
4. Peak search between 4 – 7 Hz and 7 – 13 Hz and estimation of the peak parameters (B)
5. 10 regions of interest (ROIs) defined at source space and 6 at sensor space for further statistical analyses
6. Factor analysis on the cognition battery: Promax rotation, number of factors determined by scree plots
7. Separate linear models (LMs) were used for each ROI to test differential relationship between EEG parameters and cognition (i.e. factors). Independent variables of interest were alpha power, theta power, IAF, 1/f slope, and their interaction with age. Age, sex and education were added as variables of no interest.

Results

1. Age-related alterations in EEG parameters

Our results show a negative association between individual alpha peak frequency (IAF) and age (p<0.001): IAF is decreased with increasing age and this effect is prominent in every cortical region with strongest alterations in the left temporal region.

We found no relationship between age and 1/f slope, alpha power, or theta power in our sample of elderly participants.

2. Correlation between rsEEG measures

Theta power, alpha power, IAF, and 1/f slope of the PSD are highly correlated.

3. Individual alpha peak frequency and working memory

A positive association between individual alpha peak frequency (IAF) and the factor representing working memory (p<0.01): LMs show that higher IAF at the right and left temporal regions, but also at the bilateral parietal as well as right frontal region, and anterior cingulate cortex is related to a better working memory performance when all other EEG parameters, as well as age, sex, and education, are kept constant.

4. Alpha power and speed of processing

A negative relationship between alpha power in the right frontal region and the factor representing speed of processing (p<0.01): LMs revealed that reduced alpha power in the right frontal lobe relates to a faster speed of processing in the Stroop task when all other EEG parameters, as well as age, sex, and education, are kept constant.

Conclusions

• We replicated a prominent decrease in IAF with increasing age over the whole cortex
• No evidence for age-related alterations in 1/f slope, alpha power, and theta power when controlled for IAF and vigilance in the age range from 60 to 82 years
• IAF positively associated with working memory performance
• Reduced alpha power in the right frontal region is associated with a faster speed of processing in the Stroop task

References