Linking emotional arousal to the heartbeat-evoked potential in immersive virtual reality Mind Brain SCHOOL

¹Max Planck School of Cognition, Leipzig, Germany

²Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

³Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, MindBrainBody Institute

⁴Charité - Universitätsmedizin Berlin, Germany

⁵Department of Artificial Intelligence, Fraunhofer Institute Heinrich-Hertz, Berlin, Germany

⁶Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK

⁷Sackler Centre for Consciousness Science, School of Informatics, University of Sussex, Brighton, UK

Fourcade A.^{1, 2, 3, 4*}, Klotzsche, F.^{2, 3}, Hofmann, S. M.^{2, 5}, Mariola, A.^{6, 7}, Villringer A.^{1, 2, 3, 4} and Gaebler M.^{2, 3}

Body Institute

cognition

PLANCK

MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES

Introduction

antonin.fourcade@maxplanckschools.de

- Bodily (e.g., visceral) signals are constantly processed by brain, influencing perception, action, and subjective experience.
- Heartbeat-evoked potential (HEP): cortical processing of heartbeat [1]; associated with cognitive and emotional processes [2]
- Emotional arousal: core dimension of emotional experience [3]
- Immersive virtual reality (VR) enables naturalistic (i.e., dynamic, interactive) experiments [4]

Methods

HEP differences between high arousal (HA) and **low arousal (LA) under naturalistic stimulation?**

Hypothesis (from [5]): HEP amplitude: HA > LA

- Time window after R-peak: 250 to 500 ms
- Location: temporo-parietal electrodes

Acquisition:

- 37 young, healthy participants
- 30-channel **EEG** & 1-lead **ECG**
- Retrospective **ratings** (replay): Emotional arousal (scale: 1-50)
- 2 (within-subject) head movement conditions: mov & nomov

Analyses:

ECG: Heart rate (HR) and HR variability (HRV; local power [8])

- \rightarrow Linear mixed effects model
 - fixed effects: arousal (HA, LA), head movement (mov, nomov)
 - random effect: subjects

EEG: HEP profiles

- → Non-parametric cluster-based permutation t-tests
 - Pooling mov & nomov data.
 - Cluster threshold p-value of 0.05
 - 10,000 random permutations
 - Clusters with p < .05 (two-tailed) considered "significant"

Results

Control Analyses

5 No significant differences between mov & nomov

arousa

arousa

Discussion

- Summary: Under naturalistic conditions, (1) no evidence for higher HEP amplitudes during high arousal (HA) than low arousal (LA) over temporo-parietal electrodes; (2) higher HEP amplitude during LA than during HA over left frontal electrodes. Pattern could be due to electrophysiological properties (dipole).
- HEP difference could be related to HRV difference.
- Frontal cortices associated with changes in heart rate [9], heart rate variability [10], and regulation of emotional arousal [11].

References:

- 1. Schandry, R., Sparrer, B., & Weitkunat, R. (1986). From the heart to the brain: a study of heartbeat contingent potentials. International of Neuroscience, 261-275. scalp Journal 30(4), https://doi.org/10.3109/00207458608985677
- 2. Park, H. D., & Blanke, O. (2019). Heartbeat-evoked cortical responses: underlying mechanisms, functional methodological considerations. Neuroimage, 502-511. and roles, 197, doi:10.1016/j.neuroimage.2019.04.081
- 3. Russell, J. A., & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. Journal of personality and social psychology, 76(5), 805. https://doi.org/10.1037/0022-3514.76.5.805
- 4. Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature reviews neuroscience, 12(12), 752-762. https://doi.org/10.1037/0022-3514.76.5.805
- 5. Luft, C. D. B., & Bhattacharya, J. (2015). Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Scientific reports, 5(1), 1-11.4. doi:10.1038/srep15717
- 6. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., & Robbins, K. A. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in neuroinformatics, 9, 16. https://doi.org/10.3389/fninf.2015.00016
- 7. Perakakis, P. (2019). HEPLAB: a Matlab graphical interface for the preprocessing of the heartbeat-evoked potential (Version v1.0.0). Zenodo. doi:10.5281/zenodo.2649943
- 8. Bornemann, B., Kok, B. E., Böckler, A., & Singer, T. (2016). Helping from the heart: Voluntary upregulation of heart rate variability predicts altruistic behavior. *Biological psychology*, 119, 54-63. doi:10.1016/j.biopsycho.2016.07.004
- 9. Patron, E., Mennella, R., Benvenuti, S. M., & Thayer, J. F. (2019). The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration. Neuroimage, 188, 403-410. doi:10.1016/j.neuroimage.2018.12.035
- 10. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers III, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747-756. https://doi.org/10.1016/j.neubiorev.2011.11.009
- 11. Reznik, S. J., & Allen, J. J. (2018). Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology, 55(1), e12965. https://doi.org/10.1111/psyp.12965