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Results: Peripersonal fields
Peripersonal fields naturally
emerge from two simple and
plausible assumptions :
1) living agents experience
reward when they contact
objects in the environment
2) they act to maximise reward.

These simple assumptions give
rise to egocentric action-value
fields that explain empirical find-
ings on stimulus kinematics, tool
use, valence, and network-
architecture.

Background: Body-part centric response fields are perva-
sive, but remain poorly understood because we lack a unify-
ing formal explanation of their origins and role in wider brain
function. Here, we provide such explanation.
Methods and Aims: We use reinforcement learning to ana-
lytically explain the existence of body-part centric response
fields, also known as peripersonal fields. We then simulate
multiple experimental findings considered foundational in
the peripersonal space literature, and directly fit empirical
data from 21 previously published experiments from 8
research groups.

Explanation of theory: Consider a simple environment in which an object always
moves on a downward trajectory (a), and contact between the object and a given
body part is rewarded (b). The agent will move towards objects which increase
reward (c, top) and away from objects that decrease it (c, bottom).
d In Reinforcement learning, the agent chooses its actions by calculating the value
Q of performing those actions. The agent incrementally updates the value of the
‘stay’ action, eventually arriving at the optimal value (right). Because staying in
place can create or avoid contact, the value of performing that action will form
an egocentric receptive field, centred around the body part: a peripersonal
field.
e Under different world dynamics, the value-field will take a different shape.
f The actions available to an agent also affect the positions from which an object
can contact the body: motor repertoire expands peripersonal fields.
g Temporal discount also creates an inverse relationship between stimulus dis-
tance to a body-part and action value.

Results: Egocentric maps
Our explanation offers a formal description of the notion that the world-
agent state is encoded in parieto-premotor cortices using motor primi-
tives; peripersonal fields provide short-term building blocks that
together create a map of the world near the agent in terms of its
future states: a successor representation. This short-term, close-range
egocentric peripersonal map is analogous to the long-term, long-range
allocentric spatial map of place and grid cells, which underlie locomotion
and navigation to reach distant objects. Together, these allocentric and
egocentric maps allow efficient interactions with a changing environment
across multiple spatial and temporal scales.

Model comparison to data:
a-c Macaque brain areas VIP and PZ house
neurons with body-part centred receptive
fields.
d-f Artificial networks contain similar neu-
rons when trained to simultaneously move
two ‘body-parts’; Different artificial neurons in
respectively have ‘limb’ and ‘face’ centred
receptive fields. The proportion of neurons
with such receptive fields increases as a
function of layer depth (d).
g The firing rate peak of the neurons with
arm-centred receptive fields moves with
limb position.
h As does the peak of artificial body-part
centred neurons. (‘fitted’ indicates that the
model has been numerically fitted to the
data)
i Such action-value neurons provide a puta-
tive substrate for the many body-part centred
behavioural responses observed in humans,
as demonstrated by a solid model fit (j).
k Canonical biological peripersonal fields
depend on stimulus velocity and direction.
l Artificial value fields also expand when
incoming stimuli move faster and from differ-
ent directions.
g Canonical peripersonal fields extend to
incorporate the tip of a tool, specifically after
training with it (left). Similarly, artificial value
fields expand only after training with a tool
that increases the ability to touch an object
(right)
k Proximity-dependence of peripersonal
measures is stronger for stimuli of higher
valence. Relatedly, stimuli with high valence
more frequently elicit spontaneous move-
ments when the stimuli are near (inset).
l Accordingly in artificial agents, actions (that
aim to create or avoid contact) are initiated at
further distances in response to a higher-
valence object.

Functional sub-networks emerge:
a When trained on positive and negative
reward stimuli, artificial agents display differ-
ent patterns of motor activity.
b Training an artificial network to perform
both approach and avoidance behaviors (as
in a) gives rise to spatially distinguishable
sub-networks (red vs blue; network graph
on the left). This is reminiscent of the ana-
tomical structure of the parieto-premotor sys-
tem, where peripersonal neurons cluster
together based on their behavioural function
(inset on the right).
c, Such sub-network structure is particularly
likely to appear when the network condenses
information (i.e. when it narrows; pink
histogram), compared to when it spreads out
information over many neurons in later layers
(i.e. when it widens; blue histogram).

Egocentric maps:
Peripersonal fields could be used as basis func-
tions to flexibly interact with the world near the body.
An artificial network that has only learned to reach pos-
itive valence stimuli (a,b) can be ‘recycled’ to approxi-
mate an appropriate value field for avoidance move-
ments (c,d). Specifically, by taking a weighted sum of
the neural activities in the second half of the blue net-
work PSI, the output from the red network (e) could be
faithfully reconstructed (f,g).
h Furthermore, the probability that a stimulus would hit
the body over any number of timesteps (3-timestep hit-
probability shown; left purple field) could be faithfully
reconstructed (i) using the same second half of the
blue network PSI. This is particularly informative given
that the agent never had access to information more
than 1 timestep back, while the derived hit-probability
is for 3 timesteps in the future: action values allow the
agent to build up a longer-term predictive model.

Underlying neurons have
body-part centred response fields

Functionally distinct
sub-networks emerge

A set of approximate value fields (ΨΨ)
can be ‘recycled’ into new value functions

and predict bodily impact


