Attention weights accurately predict language representations in the brain i
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Attention weights predict brain responses more accurately than lexical embeddings

Introduction

During language comprehension, humans extract Left hemisphere S1 Right hemisphere S2
the meaning of individual words and integrate the
meaning from nearby words to form contextual

representations. Superior . Superior
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Using word embeddings, previous work showed .2 = = fu
where these lexical and contextual semantic 3« P2 £ 4 P
information are located across the cerebral cortex < 9 o <

(Huth et al. 2016, Deniz et al. 2019, Schrimpf et al. Ianerior - A

2021). However, it is unclear whether the

mechanism that builds the embeddings can inform

on brain representations of language. S3
To study where context integration occurs, we use
voxelwise encoding models with

vectors that reflect the process of context Lateral Attention Lateral
integration in state-of-the-art Transformer language 0.3
models (LMs).
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We analyzed fMRI recordings of six participants

reading English language narratives. We used - Attenti :
: . ention can outperform contextual embeddings
voxelwise modeling, where features extracted from AnaIyS|s of the Ianguage models
the stimulus are used to predict the evoked brain . Cross-layer comparison in BERT Cross-model comparison in selected ROls S1
' B BERT attention
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We provided the narrative text as input to two P g e M Lexical semantic
{3 ” {3 9 - M X | W Low-level
Transformer LMs (‘BERT” and “GPT-2, Devlin et Il | overs of the LMe. Prior work hae - | - vl suiecs
al. 2018, Radford et al. 2019) and extracted their ¢ B srzlown that these layers contain § 0125,
. We then measured how well § | - L o s o -
: : : . S0.04 x s e linguistically  relevant  attention ¢
attention weights can predict the recorded brain £ g t | activity (Clark et al. 2019) = o
responses in each voxel, and compared these | miimiers o o - £U19). ’ Attention _Low-leve
o .’ 0.02f __ o BveE O o eamaili b | Prediction performance is consistent 050, B - B
predictions to those of lexical and contextual word | = =id = o 1 across the two LMs we tested I l r
embeddings. Low-level sensory features were O'OO < Individual subjects 0-0251 . Contextual semantié Faxical semantic
included as nuisance regressors. I S A 0.000- v vy
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