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Introduction
During language comprehension, humans extract 
the meaning of individual words and integrate the 
meaning from nearby words to form contextual 
representations. 
Using word embeddings, previous work showed 
where these lexical and contextual semantic 
information are located across the cerebral cortex 
(Huth et al. 2016, Deniz et al. 2019, Schrimpf et al. 
2021). However, it is unclear whether the 
mechanism that builds the embeddings can inform 
on brain representations of language.
To study where context integration occurs, we use 
voxelwise encoding models with attention weights: 
vectors that reflect the process of context 
integration in state-of-the-art Transformer language 
models (LMs).

Methods
We analyzed fMRI recordings of six participants 
reading English language narratives. We used 
voxelwise modeling, where features extracted from 
the stimulus are used to predict the evoked brain 
response.
We provided the narrative text as input to two 
Transformer LMs (“BERT” and “GPT-2”, Devlin et 
al. 2018, Radford et al. 2019) and extracted their 
attention weights. We then measured how well 
attention weights can predict the recorded brain 
responses in each voxel, and compared these 
predictions to those of lexical and contextual word 
embeddings. Low-level sensory features were 
included as nuisance regressors.

Attention weights predict brain responses more accurately than lexical embeddings

Attention can outperform contextual embeddingsAnalysis of the language models

The best predictions come from 
attention weights in the middle 
layers of the LMs. Prior work has 
shown that these layers contain 
linguistically relevant attention 
activity (Clark et al. 2019).
Prediction performance is consistent 
across the two LMs we tested.

Conclusions
The attention weights of Transformer language models accurately predict brain responses in much of the 
frontal and temporal cortices. Several of these areas have previously been associated with language 
processing, such as Broca’s area, the high-level auditory cortex (AC), the superior temporal sulcus (STS) 
and the superior ventral premotor speech area (sPMv).
Attention weights outperform lexical embeddings in most of these areas, and even outperform contextual 
embeddings in portions of these areas. These portions of the cortex may be linked to context integration.
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