# **Replay induced representation changes**

## Fabian M. Renz<sup>1,2,3</sup>, Shany Grossman<sup>2</sup>, Peter Dayan<sup>4,5</sup>, Christian F. Doeller<sup>1,6,7</sup> and Nicolas W. Schuck<sup>2,8,9</sup>

| <ol> <li>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig,<br/>Germany</li> <li>Max Planck Research Group NeuroCode, Max Planck Institute for<br/>Human Development, Berlin, Germany</li> <li>Max Planck School of Cognition, Leipzig, Germany</li> <li>Max Planck Institute for Biological Cybernetics, Tübingen, Germany</li> </ol> | 5 Eberhard-Karls-Universität Tübingen, Germany<br>6 Kavli Institute for Systems Neuroscience, NTNU, Trondheim, Norway<br>7 Universität Leipzig, Germany.<br>8 Max Planck UCL Centre for Computational Psychiatry and Ageing<br>Research, Berlin, Germany<br>9 Universität Hamburg, Germany | <b>MAX PLANCK INSTITUTE</b><br>FOR HUMAN COGNITIVE AND BRAIN SCIE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                   |





**R1** 

SCIENCES

• Behavioral piloting demonstrates learning of reward structure and successful



**R2** 

Φ

**B**2

• Four unique 4-step paths leading to 2 fluctuating rewards (R1 & R2).

B2\*

- Latent graph structure needs to be inferred by transitions and paid rewards.
- Shared reward structure allows for value
- 2 shared reward paths additionally share category structure (light orange).
- Afforded generalization (task phase 1) becomes maladaptive (task phase 2).

- value generalization.
- A planned fMRI study will investigate the along going representational changes and replay dynamics during learning.
- Replay analysis based on independently trained classifiers applied to every TR. Probability of classifiers allow to infer sequentiality of neural reactivation [4][5].

**Localizer option 1 - Sequential** 

Oddball probe

car











### **Trial structure**





## References

[1] A. S. Gupta, M. A. A. van der Meer, D. S. Touretzky, and A. D. Redish, "Hippocampal replay is not a simple function of experience," (2010). [2] L. Wittkuhn, S. Chien, S. Hall-McMaster, and N. W. Schuck, "Replay in minds and machines," (2021). [3] Y. Liu, R. J. Dolan, Z. Kurth-Nelson, and T. E. J. Behrens, "Human Replay Spontaneously Reorganizes Experience," (2019). [4] N. W. Schuck and Y. Niv, "Sequential replay of nonspatial task states in the human hippocampus," (2019). [5] L. Wittkuhn and N. W. Schuck, "Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex," (2021)









