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Trial structure

Task phase 1
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• Four unique 4-step paths leading to 2 
fluctuating rewards (R1 & R2).

• Latent graph structure needs to be 
inferred by transitions and paid rewards.

• Shared reward structure allows for value 
generalization. 

• 2 shared reward paths additionally share 
category structure (light orange).

• Afforded generalization (task phase 1) 
becomes maladaptive (task phase 2).
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Reward generalization (n=6)

• Participants successfully choose the more rewarding path across conditions.
• Participants reliably adapt their behavior following reward reversals.

• Shared category 
structure leveraged to 
generalize rewards.

• Shared category option 
will be more often 
chosen / avoided 
compared to different 
category option.

• Behavioral piloting demonstrates learning of reward structure and successful 
value generalization. 

• A planned fMRI study will investigate the along going representational changes
and replay dynamics during learning.

• Replay analysis based on independently trained classifiers applied to every TR. 
Probability of classifiers allow to infer sequentiality of neural reactivation [4][5].
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Design II - Stable R2 (n=8)Design I - Fluctuating R2 (n=9)

Available transitions

• Rodent replay research has been 
shown to go beyond past experiences, 
representing inferred trajectories [1][2].

• Recent work demonstrated that 
replay-like MEG signals reflect the 
application of structural knowledge [3].

• We hypothesize replay to go beyond 
the application of structural knowledge, 
taking an active role in establishing and 
shaping such knowledge.

Does replay contribute to learning state representations?• We devised a new 
graph-structured 
sequence task to 
investigate value 
generalization.
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Task phase 2
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