Thalamocortical Structural Connectivity and Microstructural Covariance

Alexandra John^{1,2,3}, Meike D. Hettwer^{1,3,4}, H. Lina Schaare^{1,3}, Amin Saberi^{1,3}, Şeyma Bayrak^{1,3},

Bin Wan^{1,3}, Jessica Royer⁵, Boris Bernhardt⁵, Sofie Valk^{1,3}

1) Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2) Faculty for Life Sciences, Leipzig University, Leipzig, Germany,

3) INM-7, Research Centre Jülich, Jülich, Germany, 4) Max Planck School of Cognition, Leipzig, Germany,

5) Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada

contact: ajohn@cbs.mpg.de

MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES

Introduction

LEIPZIG

UNIVERSITÄT

- The thalamus is a diencephalic, bilateral, and highly heterogeneous structure that is extensively connected to cortical and subcortical regions
- In the past, the human thalamus has been parcellated based on thalamocortical structural connectivity using DWI¹
 While the 'structural model'² proposes that regions with similar microstructure are more likely to be connected in the cortex, its implication for thalamocortical associations remains unclear

Data: diffusion-weighted imaging (DWI) and quantitative T1 (qT1) data from MICA-MICs dataset³ (N=50, age 29.54±5.62y)

Methods

Structural Connectivity

Probabilistic tractography

- From thalamic seed voxels (L: 1068, R: 1029; res. 2mm) to 100 ipsilateral cortical parcels⁴
- Averaged across subjects to create a group-level

Microstructure

Intrathalamic Contextualization:

 Thalamic axes were correlated with a thalamic core-matrix map⁶ and intrathalamic qT1 values as a proxy for myelin, while correcting for spatial autocorrelation (SA) using

Here, we study the link between

- thalamocortical structural connectivity
- intrathalamic microstructure,
- and thalamocortical structural covariance

structural connectivity matrix

Dimensionality Reduction:

- To extract the first two main axes of thalamocortical structural connectivity, we performed diffusion map embedding⁵
- Axes were projected onto cortex by correlating gradient loadings with structural connectivity profiles of each parcel

variograms⁷

Structural covariance:

- Depth-specific structural covariance matrices were generated by correlating thalamic (voxelwise) and cortical (parcelwise; per parcel 12 compartments perpendicular to cortical surface) qT1 measures across subjects
- The correlation between gradient loadings and structural covariance was analyzed using the cross-depth average and according to variations observed between compartments

Results

Thalamocortical Structural Connectivity Gradients

Structural Connectivity Matrix and Gradient Computation

Principal Thalamic Axis (G1)

1 2 3 4 5 6 7 8 9 10 components

G1: medial to lateral-central axis; projected on cortex: paralimbic to somatosensory axis **G2:** medial-anterior and medial-posterior to intersection from anterior-laterally to central-medially; projected on cortex: posterior to anterior axis

Link to Intrathalamic Microstructural Features

Core-Matrix Cell Distribution

•

Correlation between G2 and core-matrix cell distribution in the left thalamus (Pearson's r=0.57, p_{SA} =0.03)

Thalamic Grouplevel qT1-Intensity

from Intrinsic Functional Connectivity MRI. Cerebral Cortex 28, 3095-3114.

Correlation between G1 and intrathalamic qT1-intensity (L: r=-0.49, p_{SA} =0.026; R: r=-0.54, p_{SA} =0.008)

Link to Thalamocortical Structural Covariance

Conclusion	References
Consistent with previous research ⁸ , we characterized variations of thalamocortical connectivity patterns across the thalamus and showed its links to intrathalamic microstructural and cellular variations Further, extending on research in mice ⁹ , we demonstrated that thalamocortical microstructural covariance adheres to structural connectivity profiles in a depth-varying manner	 Behrens, T.E.J., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A.M., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., Thompson, A.J., Brady, J.M., Matthews, P.M., 2003. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6, 750–757. https://doi.org/10.1038/nn1075 García-Cabezas, M.Á., Zikopoulos, B., Barbas, H., 2019. The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 224, 985–1008. https://doi.org/10.1007/s00429-019-01841-9 Royer, J., Rodríguez-Cruces, R., Tavakol, S., Larivière, S., Herholz, P., Li, Q., Vos de Wael, R., Paquola, C., Benkarim, O., Park, B., Lowe, A.J., Margulies, D., Smallwood, J., Bernasconi, A., Bernasconi, N., Frauscher, B., Bernhardt, B.C., 2022. An Open MRI Dataset For Multiscale Neuroscience. Sci Data 9, 569. https://doi.org/10.1038/s41597-022-01682-y Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff, Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, XN., Holmes, A.J., Eickhoff,