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LEARNING & DECISION MAKING 

TASKBACKGROUND
• Neural networks can learn useful representations of observed inputs
• During insight moments, useful task representations are discovered suddenly - 

following a delay during which no learning is noticeable
• Insights are commonly observed in animals and humans [1,2]
• Insight moments are thought to be governed by a dedicated cognitive process 

and to reflect explicit strategy discovery or shifts of attention [3]
• Here we study an insight-like strategy adaptation that is based on using correla-

ted input features to improve task performance

LITERATURE: [1 ]Köhler,W. (1925). The Mentality of Apes. London: Kegan Paul. [2] Schuck N. W. et al.,  Medial prefrontal cortex predicts internally driven strategy shifts. Neuron. 2015 Apr 8;86(1):331-40. [3] Kounios, J. & Beeman, M. (2014). The cognitive 
neuroscience of insight. Annual review of psychology, 65, 71-93.
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Random Dot Motion Task
2-alternative forced choice task
4 motion directions
2 colours
Binary feedback after every trial

Noise levels
Motion: noise varies in five steps
Colour: no noise

Colour is random at 
first, so participants 
and networks initial-
ly learn the relevan-
ce of motion direc-
tion. After about half 
of the trials, colour 
becomes predictive 
of the correct choice 
(shown on the left) 
and can improve 
behavioural effici-
ency drastically.
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• Insight: moment in which per-
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jump, that could not be modelled 
with a linear ramp
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the individually fitted switch points (dashed vertical line).
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• Half of human volunteers performing the task showed insight-like learning about newly relevant features
• A simple linear neural network (baseline performance matched to humans) with regularised gate modulation on the two input nodes, exhibited abrupt learning dyna-

mics resembling insight-like behaviour
• Regularised gradual learning mechanisms suffice to produce insight-like phenomena in neural networks
• Frequency and delay of insight-like behaviour depend on the amount of regularisation
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Δwc = − αxcgc(xcgcwc + xmgmwm + η − y) + ξwc

Δgc = − αxcwc(xcgcwc + xmgmwm + η − y) − αλsign(gc) + ξgc

Analytical results

Stochastic online gradient updates for colour 
weights and gates

imply non-linear quadratic and cubic dynamics.

Delay and frequency of non-linear insight-like 
switches depend on the strength of .λ
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• Regularised gradual learning mechanisms suffice to produce insight-like phenomena in neural networks
• Frequency and delay of insight-like behaviour depend on the amount of regularisation

Distribution of gate weights

Before colour is predictive
 (Trial = 1000)

After colour is predictive
 (Trial = 1400)

Gate weight changes around the 
estimated switch point
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The N = 99 neural networks are adjusted to match the behaviour of the N = 99 human participants.
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Δwc = − αxcgc(xcgcwc + xmgmwm + η − y) + ξwc

Δgc = − αxcwc(xcgcwc + xmgmwm + η − y) − αλsign(gc) + ξgc

Analytical results

Stochastic online gradient updates for colour 
weights and gates

imply non-linear quadratic and cubic dynamics.

Delay and frequency of non-linear insight-like 
switches depend on the strength of .λ
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NEURAL & COMPUTATIONAL BASIS OF  
LEARNING & DECISION MAKING 

TASKBACKGROUND
• Neural networks can learn useful representations of observed inputs
• During insight moments, useful task representations are discovered suddenly - 

following a delay during which no learning is noticeable
• Insights are commonly observed in animals and humans [1,2]
• Insight moments are thought to be governed by a dedicated cognitive process 

and to reflect explicit strategy discovery or shifts of attention [3]
• Here we study an insight-like strategy adaptation that is based on using correla-

ted input features to improve task performance

LITERATURE: [1 ]Köhler,W. (1925). The Mentality of Apes. London: Kegan Paul. [2] Schuck N. W. et al.,  Medial prefrontal cortex predicts internally driven strategy shifts. Neuron. 2015 Apr 8;86(1):331-40. [3] Kounios, J. & Beeman, M. (2014). The cognitive 
neuroscience of insight. Annual review of psychology, 65, 71-93.

Correct response: 

Random Dot Motion Task
2-alternative forced choice task
4 motion directions
2 colours
Binary feedback after every trial

Noise levels
Motion: noise varies in five steps
Colour: no noise

Colour is random at 
first, so participants 
and networks initial-
ly learn the relevan-
ce of motion direc-
tion. After about half 
of the trials, colour 
becomes predictive 
of the correct choice 
(shown on the left) 
and can improve 
behavioural effici-
ency drastically.

gm

gc

xc

xm

̂y

̂y = sign(gmwmxm + gcwcxc + η)

Loss = 1
2 ( ̂y − y)2 + λ( |gm | + |gc | )

Input nodes 
motion ( ) and colour ( )  

x
m c

Gate weights g

Output ̂ywm

wc

• Trained with SGD
• Pre-training phase with lower noise 

followed by identical task structure 
that humans complete

• Baseline performance matched to 
humans

• L1 regularisation on gate weights

RESULTS

Fixation Stimulus + Response Feedback

2000 msShuffled between:  
400 / 600 / 800 / 1000 ms

displayed until end of trial

2 4 6 8 10 12 14
Block

%
 c

or
re

ct
40

60
80

10
0

behavior

motion coh.
0.05
0.1
0.2
0.3
0.45

behavior

motion coh.
0.05
0.1
0.2
0.3
0.45

behavior

motion coh.
0.05
0.1
0.2
0.3
0.45

behavior

motion coh.
0.05
0.1
0.2
0.3
0.45

behavior

motion coh.
0.05
0.1
0.2
0.3
0.45

behavior

motion coh.
0.05
0.1
0.2
0.3
0.45

Motion user

46.5%

• Used generalised logistic re-
gression modelling of partici-
pant data to determine whether/
when subjects showed colour 
learning after it has become pre-
dictive

• Insight: moment in which per-
formance exhibits an abrupt 
jump, that could not be modelled 
with a linear ramp

•  = 0.04 for networks shown hereλ

Right: performance on 0.05 coherence trials time-locked to 
the individually fitted switch points (dashed vertical line).

N = 99 N = 99

Colour switcher
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NETWORK ARCHITECTURE
Q: Can insight-like learning dynamics arise naturally from gradual learning?
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• Half of human volunteers performing the task showed insight-like learning about newly relevant features
• A simple linear neural network (baseline performance matched to humans) with regularised gate modulation on the two input nodes, exhibited abrupt learning dyna-

mics resembling insight-like behaviour
• Regularised gradual learning mechanisms suffice to produce insight-like phenomena in neural networks
• Frequency and delay of insight-like behaviour depend on the amount of regularisation

Distribution of gate weights

Before colour is predictive
 (Trial = 1000)

After colour is predictive
 (Trial = 1400)

Gate weight changes around the 
estimated switch point
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The N = 99 neural networks are adjusted to match the behaviour of the N = 99 human participants.
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Δwc = − αxcgc(xcgcwc + xmgmwm + η − y) + ξwc

Δgc = − αxcwc(xcgcwc + xmgmwm + η − y) − αλsign(gc) + ξgc

Analytical results

Stochastic online gradient updates for colour 
weights and gates

imply non-linear quadratic and cubic dynamics.

Delay and frequency of non-linear insight-like 
switches depend on the strength of .λ

Random Dot Motion Task

• 4 motion directions

• 2 colours

• 2-alternative forced 

choice

• Trial-wise binary 

feedback
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Q: can insight-like learning arise naturally from gradual learning?

• Insights, or aha-moments, are a remarkable phenomenon in human cognition

• Occur after a period of impasse [1], happen unusually abrupt [2] and only in some 

learners [3]

• Neural networks trained with SGD seem to imply that all learning is gradual

• We test insight-like learning dynamics (delay, suddenness, selectivity) in humans 

and L1-regularised gated neural networks

• Humans tend to discover a hidden task regularity through insight, rather than gradually

• Neural networks with regularised gate modulation closely mimicked behavioural characteristics of 

human insights (delay, suddenness, selectivity)

• Insight-like behaviour in networks crucially depended on noise added to gradient updates, preceded by 

“silent knowledge” that is initially suppressed by regularised (attentional) gating

• We shed light on the computational origins of insights and suggest that they can arise naturally from 

gradual learning mechanisms

Preprint:

Noise levels

motion: varies in five 
steps

colour: no noise
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