Minimally invasive and continuous rating of affective experience in immersive Virtual Reality: a feasibility study.

Fourcade, A^{*1,2,3,4}, Malandrone, F^{*5}, Ciston, A^{2,3}, de Mooij, J.², Villringer, A.^{1,2,3,4} and Gaebler, M.^{2,3}

(1) Max Planck School of Cognition, Leipzig, Germany | (2) Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (3) Max Planck Dahlem Campus of Cognition, Max Planck Society, Berlin, Germany | (4) Charité - Universitätsmedizin Berlin, Germany **MAX PLANCK INSTITUTE** (5) Department of Clinical and Biological Sciences, University of Turin, Turin, Italy FOR HUMAN COGNITIVE AND BRAIN SCIENCES

Correspondence: antonin.fourcade@maxplanckschools.de

Introduction

Background

- Subjective experience: integral component of affective states (AS) [1].
- Summary ratings (SR) commonly used after stimulus to capture subjective experience of AS.
- **Continuous rating (CR)** under dynamic stimulation
- may allow more fine-grained understanding of AS but
- may alter the experience of AS ("invasiveness") [5,6].
- Immersive virtual reality (VR) •
 - contextually rich and engaging computer-generated

- scenarios [2].
- more naturalistic elicitation of specific psychological states [3, 4].
- higher experimental control than real-life assessment [7]

Aims

Develop a rating method (RM) for the CR of AS during dynamic stimulation in VR.

- 1. Investigate link between CR and SR.
- 2. Determine best (i.e., least invasive) rating method (RM).

Hypotheses

1. CR are statistically associated with SR. 2. Proprioceptive RM is the least invasive.

Questionnaires

- Digital Survey
- Previous VR experience
- Simulation Sickness Questionnaire
- RM preference
- In-VR
 - System Usability Scale
 - Sense of Presence
 - Perceived Invasiveness
 - ("The rating method was
 - distracting and/or disturbing")
 - Kunin Scale (satisfaction)

CR indices (CRi)

- Last rating •
- Central tendencies (e.g., mean)
- Dispersion tendencies (e.g., max/min, STD)
- Shape of distribution (e.g., skewness, kurtosis)
- Area under the curve (AUC)

Dimension	valence				arousal				distance				angle			
CRi	mean	std	skewness	kurtosis	mean	std	skewness	kurtosis	mean	std	skewness	kurtosis	mean	std	skewness	kurtosis

Discussion

1. Preliminary results

- a. SR strongly associated with CR mean
- b. RMs not distracting + Visual preferred
- 2. Short stimuli (1-min) with low affective variability
 - a. Good for comparing CR to SR (e.g., repetition to avoid order effects)
 - b. Don't take full advantage of CR
- 3. Next steps
 - a. Refinement of prototypes + full data collection
 - b. Select one prototype + longer stimuli with more affective variability
 - c. Extend to clinical populations
 - d. Combine with physiological recordings

References

12

13

- 1. Huk, A., Bonnen, K., & He, B. J. (2018). Beyond Trial-Based Paradigms: Continuous Behavior, Ongoing Neural Activity, and Natural Stimuli. Journal of Neuroscience, 38(35), 7551-7558. https://doi.org/10.1523/JNEUROSCI.1920-17.2018.
- 2. Diemer, J., Alpers, G. W., Peperkorn, H. M., Shiban, Y., & Mühlberger, A. (2015). The impact of perception and presence on emotional reactions: A review of research in virtual reality. Frontiers in Psychology, 6(JAN), 26. https://doi.org/10.3389/FPSYG.2015.00026/BIBTEX.
- 3. Sanchez-Vives, M., Slater, M. From presence to consciousness through virtual reality. Nat Rev Neurosci 6, 332-339 (2005). https://doi.org/10.1038/nrn1651.
- 4. Somarathna, R., Bednarz, T., & Mohammadi, G. (2021). Multi-componential analysis of emotions using virtual reality. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST. https://doi.org/10.1145/3489849.3489958.
- 5. Taylor, S. F., Phan, K. L., Decker, L. R., & Liberzon, I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage, 18(3), 650-659. https://doi.org/10.1016/S1053-8119(02)00051-4.
- 6. Torre, J. B., & Lieberman, M. D. (2018). Putting Feelings Into Words: Affect Labeling as Implicit Emotion Regulation. Https://Doi.Org/10.1177/1754073917742706, 10(2), 116-124. https://doi.org/10.1177/1754073917742706.
- 7. Meuleman and Rudrauf, "Induction and Profiling of Strong Multi-Componential Emotions in Virtual Reality," in IEEE Transactions on Affective Computing, vol. 12, no. 1, pp. 189-202, 1 Jan.-March 2021, doi: 10.1109/TAFFC.2018.2864730.