Taq1A and DARPP polymorphisms are associated with worse working memory updating in high-BMI individuals

MAX PLANCK NSTITUTE Nadine Herzog^{1,2}, Hendrik Hartmann^{1,3,4}, Arsene Kanyamibwa^{1,3,4}, Annette Horstmann^{1,3,4}

¹Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany ²International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom ³Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany ⁴Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland

naherzog@cbs.mpg.de

-0-	Introduction –
-----	----------------

Participants

- combined data set from 3 studies (fMRI: GREADT, BEDOB; EEG: WORMCRI),
- final N = 318 (152 females; mean Age = 26.93 years (SD = 6.79, min = 12.17, max = 49.75); mean BMI = 26.40 kg/m² (SD = 6.37, min = 17.51, max = 45.54).
- all physically and mentally healthy, right-handed

Working memory gating task

ELSINGFORS UNIVERSITE

THE INTERPLAY OF OBESITY AND THE BRAIN

CATCGTTAG

Working memory (WM) gating requires stable maintenance and flexible updating of information. These processes are implemented via dopamine-dependent signaling in the dorsolateral prefrontal cortex (PFC) and striatum [1,2]. Two single nucleotide polymorphisms (SNPs), COMT (rs4680) and Taq1A (rs1800497), have been associated with dopamine in PFC and striatum respectively, as well as with working memory functioning [3,4,5]. Furthermore, altered dopamine transmission has been observed in individuals with high BMI [6]. It remains unclear, however, if and how these two SNPs interactively influence working memory gating, depending on BMI.

Research questions:

Do COMT and Taq1A interact to foster differential performance in WM gating, depending on BMI?

Exploratory: Do other proxies of dopamine modulate WM gating, depending on BMI?

Proxies for Dopamine Differences

→ Taq1A: A1+ associated with less D2 Receptors in Striatum→ COMT: met/met associated with more dopamine in PFC

exploratory:

- → **DARPP:** A/A associated with enhanced striatal D1 efficacy
- → C957T: T/T higher D2 receptor availability (PFC & Striatum)
- ratio of phenylalanine and tyrosine to large neutral
 - amino acids: proxy for endogenous dopamine levels

Study Design

Analysis

trial based analysis: logistic regression for accuracy (correct vs. incorrect)

model comparison approach to find best fitting, least complex model

(1) accuracy ~ **COMT * Taq1A** * condition * zBMI + ztiredness + zIQ + zconcentration + gender + (1 | subject)

```
exploratory (corrected for multiple comparisons, p-value time 5)
(2-5) accuracy ~ SNP * condition * zBMI + zIQ + ztiredness
+ zconcentration + gender + (1 | subject)
```

(6) accuracy ~ **amino acid ratio** * condition * zBMI + zIQ + zconcentration + gender + (1|subject)

No gene-gene interaction, but BMI-dependent effect of Taq1A on working memory updating model 1: $p_{\text{COMT*Taq1A*condition*BMI}} = 0.106$; $p_{\text{Taq1A*BMI*condition}} < 0.000$

Amino acid ratio interacts with BMI to foster differential ignoring vs. updating model 6: $p_{AAratio*BMI*condition} = 0.023$

Posthoc: $p_{update vs. ignore} = 0.011$; all other comparisons [update vs.]

ctrl_short; ignore vs. ctrl_long; ctrl-short vs. ctrl_long] p > 0.226

High BMI combined with an "disadvantageous" genotype is associated with worse updating.

Specifically, SNPs associated with striatal dopamine

Posthoc: $p_{Taq1A*BMI}$ for update = 0.001; $p_{Taq1A*BMI}$ all other conditions > 0.05

BMI-dependent effect of DARPP on updating of working memory contents

model 2: $p_{DARPP*BMI*condition} = 0.001$ Posthoc: $p_{DARPP*BMI}$ for update = 0.011; $p_{DARPP*BMI}$ all other conditions > 0.189

Association between amino acid ratio and BMI-dependent ignore/update is mediated by food intake

additional mediation analysis: subscore of items high in phenylalanine and tyrosine from the Dietary Fat and Sugar Questionnaire.

- 1) $p_{\text{subscore} \sim \text{AAratio}} < 0.001$ (r = -0.281, 95Cl = -0.4180702 0.1307529)
- 2) subscore as a covariate in *model 6*
 - \rightarrow p_{AAratio*BMI*condition} = 0.097, indicating a mediation.

transmission are at play here

- → complies with evidence suggesting that high BMI is associated with impaired dopamine transmission within the striatum [6]
- → first study to show that specifically updating of WM is affected in individuals with high BMI who also possess a disadvantageous genotype

We found no significant associations between COMT or C957T and BMI-dependent working memory gating
→ both SNPs are (also) related to PFC dopamine [3,7]
→ in line with that there are no ignore-related effects
→ emphasizes that specifically updating/striatal effects are at play

Blood amino acid ratio, which is likely to be influenced by intake of foods high in phenylalanine and tyrosine, can affect BMI-dependent WM gating performance → suggests that a diet high in phenylalanine and tyrosine could rescue "bad" updating → highly speculative! → needs specifically designed studies, with explicit measures targeted to quantify food

This work was funded by:

The standardized coefficient between amino acid ratio and working memory, controlling for DFS subscore, is in parentheses. *** p < 0.001; * p < 0.05

intake properly

[1] Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological psychiatry, 64(9), 739-749.

[2] O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation, 18(2), 283-328.

[3] Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., Kolachana, B. S., Hyde, T. M., Herman, M. M., Apud, J., Egan, M. F., Kleinman, J. E., & Weinberger, D. R. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75(5), 807–821

[4] Jönsson, E. G., Nöthen, M. M., Grünhage, F., Farde, L., Nakashima, Y.,

Propping, P., & Sedvall, G. C. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4(3), 290–296.

Amino Acid

Ratio

high

🔵 middle

[5] Berryhill, M. E., Wiener, M., Stephens, J. A., Lohoff, F. W., & Coslett, H. B. (2013). COMT and ANKK1-Taq-Ia genetic polymorphisms influence visual working memory. PloS One, 8(1), e55862.

[6] Horstmann, A., Fenske, W. K., & Hankir, M. K. (2015). Argument for a non-linear relationship between severity of human obesity and dopaminergic tone. Obesity Reviews, 16(10), 821-830.

[7] Hirvonen, M., Lumme, V., Hirvonen, J., Pesonen, U., Nagren, K., Vahlberg, T. (2009). C957T polymorphism of the human dopamine D2 receptor gene predicts extrastriatal dopamine receptor availability in vivo, Prog. Neuropsychopharmacol. Biol. Psychiatry 33 (4) 630–636,

contact: naherzog@cbs.mpg.de

www.obrainlab.com