Reliability of task-based fMRI in the dorsal horn of the human spinal cord

Alice Dabbagh¹, Ulrike Horn¹, Merve Kaptan^{1,2}, Toralf Mildner³, Roland Mueller³, Joeran Lepsien³, Nikolaus Weiskopf^{4,5}, Falk Eippert¹

¹ Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, ² Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA,, ³ Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, ⁵ Felix Bloch Institute for Solid State Physics, University of Leipzig, Leipzig, Germany

dabbagh@cbs.mpg.de

IMPRS NeuroCom

MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES

Summary

- Phasic heat stimuli on the forearm evoked BOLD responses in the ipsilateral dorsal horn of spinal segment C6 on both experimental days (though without spatial overlap)
- Test-retest reliability of BOLD responses was poor in the target region, but good in a region including the draining veins

Motivation

- The spinal cord is the initial processing site within the CNS pain pathway and a core target of descending modulation^[1]
- Spinal fMRI is still a relatively young field, facing many challenges such as the small diameter of the cord and the impact of physiological noise ^[2,3]

We aimed to probe the limitations of task-based spinal fMRI by investigating the reliability of spinal cord BOLD responses to identical painful stimulation across two consecutive days

Spatial specificity of the spinal cord BOLD response Spatial extent of the BOLD response

Average over both sessions, uncorrected p < 0.001

Distribution of active voxels across the gray matter horns

BOLD responses occurred on both days in the left dorsal horn of segment C6, though without spatial overlap ($p_{corrected} < 0.05$).

Test-retest reliability

C5 - C8

ns

C6

While overall spatial specificity is likely impacted by draining vein signal, pain-induced BOLD responses showed adequate spatial specificity in the gray matter target segment.

Physiological state and data quality across days

BOLD responses: Average of top 10% of ß scores

Reliability ^[4] was good to excellent for most non-BOLD measures, while BOLD response reliability was poor in the target region (DH left, C6), but good in an extended area.

While heart-rate showed a slight increase from Day 1 to Day 2, none of the other measures indicated significant changes across days.

Conclusion

- Heat pain stimuli as short as 1s evoked a robust BOLD response in the ipsilateral dorsal horn in spinal cord segment C6
- The reliability of the peak BOLD response was poor in the target area, but in the good range in a region including the draining veins
- Further analysis showed that reliability did not improve when taking into account more trials or when accounting for spontaneous fluctuations of BOLD activity
- Future studies could assess to what extent spinal cord BOLD reliability is tied to stimulus features or data processing approaches ^[5]

References

0.6

Motion 0.5

- 1) Fields, H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5(7), 565–575.
- 2) Cohen-Adad, J. (2017). Functional magnetic resonance imaging of the spinal cord: Current status and future developments. Seminars in Ultrasound, CT and MRI, 38(2), 176–18
- 3) Summers, P. E., Brooks, J. C. W., & Cohen-Adad, J. (2014). Spinal cord fMRI. In J. Cohen-Adad & C. Wheeler-Kingshott (Ed.) Quantitative MRI of the spinal cord. (pp. 221–239). Elsevier.
- 4) Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420.
- 5) De Leener, B., Lévy, S., Dupont, S. M., Fonov, V. S., Stikov, N., Louis Collins, D., Callot, V., & Cohen-Adad, J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage, 145, 24–43.