

Biomedic

Sensing

Multimodal fNIRS-EEG Sensor Fusion: Data-Driven Methods and Perspective for Naturalistic Brain Imaging

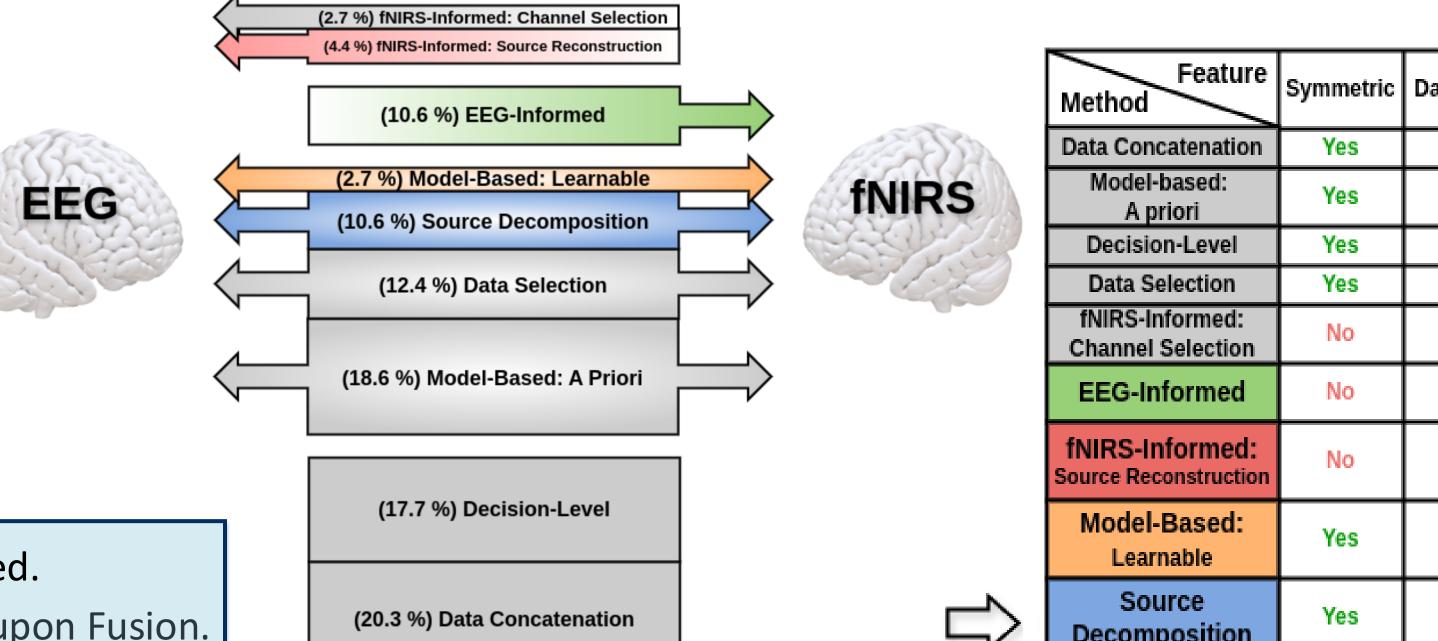
Tomás Codina^{1,2,*}, Bilal Siddique^{1,2}, Alexander von Lühmann^{1,2,*}

¹ Intelligent Biomedical Sensing (IBS) Lab, Technische Universität Berlin, 10587 Berlin, Germany

² BIFOLD – Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany / * t.codina@tu-berlin.de, vonluehmann@tu-berlin.de

Motivation

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), particularly its high-density variant **Diffuse Optical Tomography (DOT)**, are established, cost-effective, and non-invasive neuroimaging techniques, whose integration represents a promising direction for brain activity decoding in **naturalistic scenarios** with **high spatiotemporal resolution [1]**. However, **robust machine-**



	Feature Method	Symmetric	Data-Driven	Unsupervised	Flexible	Early Fusion
	Data Concatenation	Yes	No	Yes	No	No
	Model-based: A priori	Yes	No	Yes	No	No/Yes
	Decision-Level	Yes	Yes	No	No	No
ſ	Data Selection	Yes	No/Yes	No/Yes	No	No/Yes
	fNIRS-Informed: Channel Selection	No	Yes	Yes	No	Yes
	EEG-Informed	No	No	No	Yes	Yes
	fNIRS-Informed: Source Reconstruction	No	No	Yes	Yes	Yes
	Model-Based: Learnable	Yes	No	No/Yes	Yes	Yes
	Source Decomposition	Yes	Yes	Yes	Yes	Yes

We focus on **multimodal fusion methods [2]**, emphasizing **data-driven unsupervised symmetric** techniques. We conducted a **survey**, reviewing over 110 articles, identified most **promising methods** and tested them on **synthetic multimodal ground truth**.

- Source Decomposition Methods: Best Candidates but Underrepresented.
- In Contrast to EEG: No Proper Physiological Artifact Removal in fNIRS upon Fusion.

Problem Statement and Methods Overview

PROBLEM: the analysis of multimodal data from continuous brain imaging on naturalistic environments typically suffers from two problems

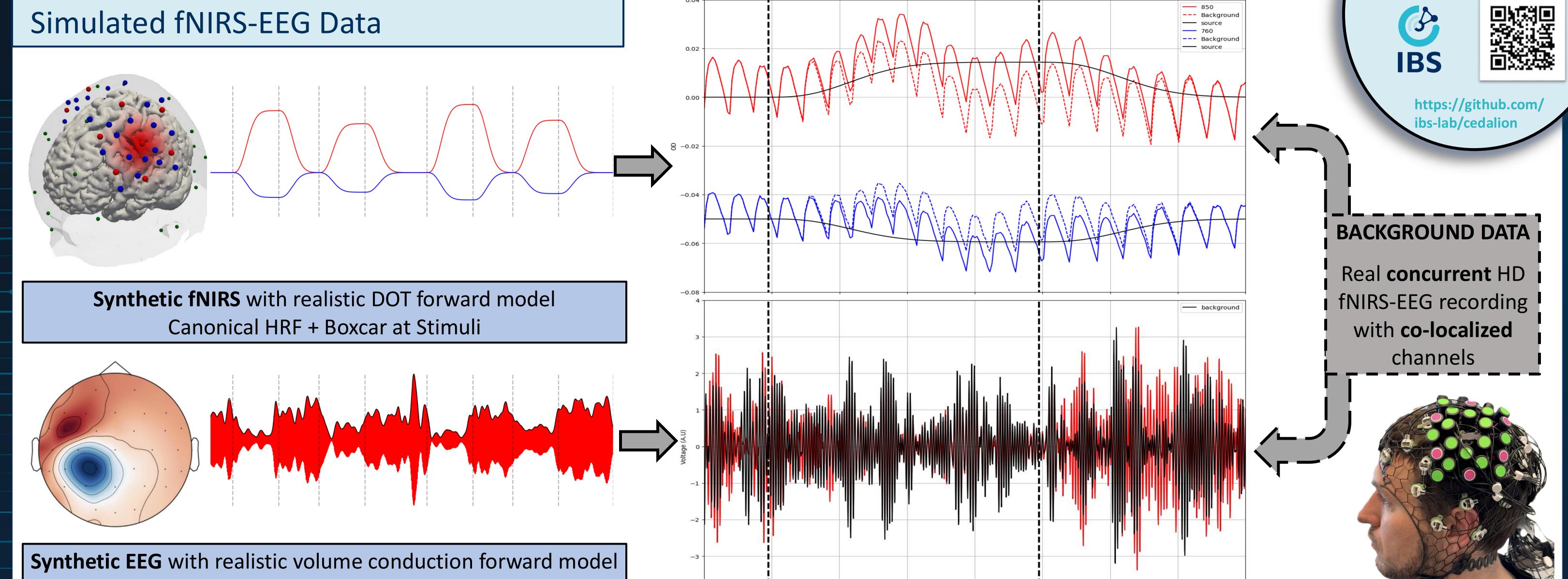
 No Block-Design Paradigms: No precise knowledge about stimuli and timing.
Unknown physiological relationships and coupling mechanisms between confounders & main modalities.

Well-established techniques, such as decision-level fusion, data concatenation, or model-based methods like GLM fall short in these regards.

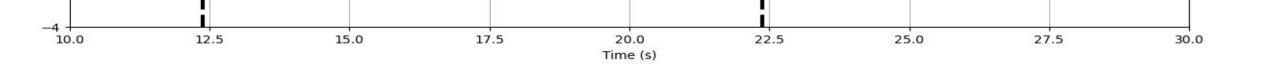
The multimodal challenge requires **flexible early-fusion** methods that leverage **high-dimensional data** to find complex shared latent processes in an **unsupervised** and **symmetric** (bidirectional) fashion.

Source Decomposition $S_x(t) = w_x^T \cdot X(t)$, $S_y(t) = w_y^T \cdot Y(t)$ \circ <u>CCA</u>: Maximizes Corr(Sx, Sy) $\max_{w_x, w_y} w_x^T C_{xy} w_y$ s.t. $w_x^T C_x w_x = w_y^T C_y w_y = 1$

- ElasticNetCCA: CCA + Sparse (L1) + Normalized (L2) Solutions
 - CCA s.t. $||w_x||_1 \le c_{x1}$, $||w_y||_1 \le c_{y1}$, $||w_x||_2^2 \le c_{x2}$, $||w_y||_2^2 \le c_{y2}$.
- **Structured Sparse CCA:** ElasticNetCCA + Spatial Structure of Data (Lx, Ly)
 - CCA s.t. $||w_x||_1 \le c_{x1}$, $||w_y||_1 \le c_{y1}$, $w_x^T L_x w_x \le c_{x2}$, $w_y^T L_y w_y \le c_{y2}$
- $\circ \quad \underline{\mathbf{tCCA}}: \mathsf{CCA} + \mathsf{Temporal Embedding} \ S_x(t) \to [S_x(t), S_x(t \tau_1), \dots, S_x(t \tau_N)]$
- **mSPoC:** tCCA + Bandpower $S_x(t) \rightarrow P[S_x(t)]$



Dipole + Power Decay in Alpha Band at Stimuli

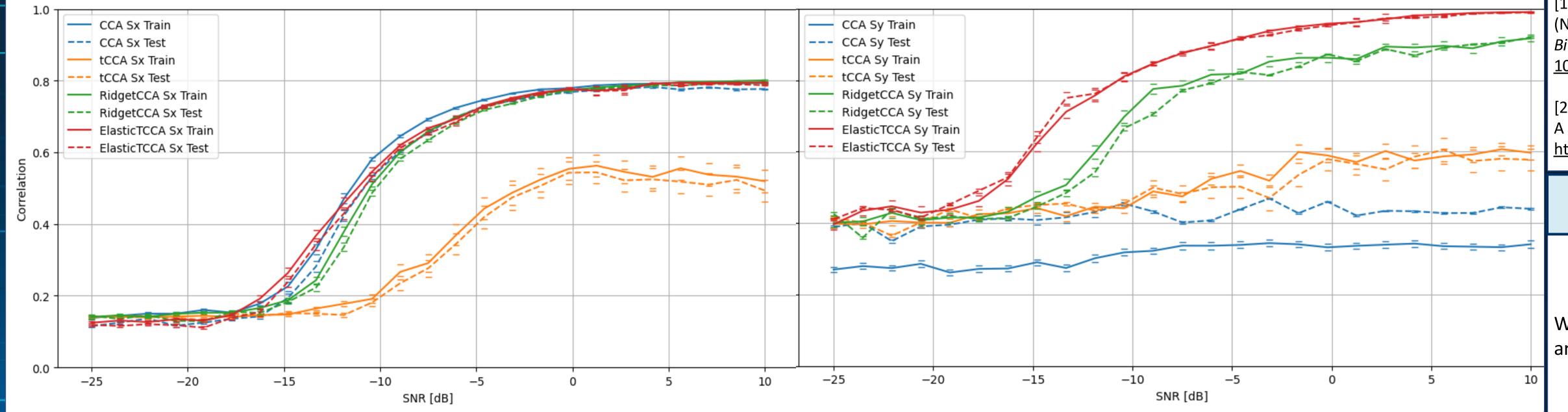


Available Soon In

CEDALION

Preliminary Results

Comparing Source Decomposition Methods on Synthetic Data



References

[1] von Lühmann *et al.*, "Toward Neuroscience of the Everyday World (NEW) using functional near-infrared spectroscopy," *Current Opinion in Biomedical Engineering*, vol. 18, p. 100272, Jun. 2021, doi: 10.1016/j.cobme.2021.100272.

[2] Li, R. *et al.,* "Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review". Sensors, 22 (15), 5865. <u>https://doi.org/10.3390/s22155865</u>.

Acknowledgements

We thank **Prof. Benjamin Blankertz** for valuable comments and discussions on the synthetic data generation process.