Medical University of Graz

Debugging, regularization and **validation** - explainable deep learning as a means to enhance brain disease classification models using MRI data

Christian Tinauer¹

¹Department of Neurology, Medical University of Graz, Graz, Austria

CBS-CoCoNUT Talk, 25th October 2024

CBS CoCoNUT cognitive computational neuroscience unification trial

Journal

Club

Tools &

Techniques

Philosophica

Discourse

(12)

Research

Presentations

ξß

Introduction - Disease and MRI data

- ► Alzheimer's disease (AD) is the most common form of dementia
- ~55 million living with AD worldwide

Structural MRI

[1] ICBM 2009a Nonlinear Asymmetric 1×1×1mm template (modified)[2] Damulina et al, Radiology, 2021

R2* maps (Quantitative MRI)

Figure 2: R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec-

[1] Wen et al, Medical Image Analysis, 2020

Junhao Wen^{a, b, c, d, e, †}, Elina Thibeau-Sutre^{a, b, c, d, e, †}, Mauricio Diaz-Melo^{e, a, b, c, d}, Jorge Samper-González^{e, a, b, c, d}, Alexandre Routier^{e, a, b, c, d}, Simona Bottani^{e, a, b, c, d}, Didier Dormont^{e, a, b, c, d}, f Stanley Durrleman^{e, a, b, c, d}, Ninon Burgos^{a, b, c, d, e}, Olivier Colliot^{a, b, c, d, e, f, g} \approx \boxtimes , for the Alzheimer's Disease Neuroimaging Initiative[#], the Australian Imaging Biomarkers and Lifestyle flagship study of ageing^{##}

Introduction - Explainable Deep Learning

Introduction - Layer-wise Relevance Propagation R_i Medical University of Graz $A R_{i \leftarrow j}$ **o**dog input Ο R Ο traditional heatmap $R_{i\leftarrow j}^{(l-1,l)}(\mathbf{x}) = \frac{z_{ij}}{z_j} R_j^l(\mathbf{x})$

[1] Achtibat et al, Nature Machine Intelligence, 2023

1st Research Question

How much does T1w image texture influence deep learning Alzheimer's disease classifier?

Medical University of Graz

Debugging:

ISMRM & ISMRT ANNUAL MEETING & EXHIBITION TORONTO 03-08 JUNE 2023

Abstract #3046

When texture does not matter: Misinterpretation of deep learning-based Alzheimer's disease classification

Christian Tinauer¹, Stefan Ropele¹, and Christian Langkammer¹ ¹Medical University of Graz, Graz, Austria

When texture does not matter: Misinterpretation of deep learning-based Alzheimer's disease classification

and

Clever Hans effect found in a widely used Alzheimer's Disease MRI dataset

Methods - Dataset and Preprocessing

990 MRIs from 201 patients with probable AD; mean age=75.1±7.1 years, m/f=102/99

...propensity-logit-matched (covariates: age, sex) with...

990 MRIs from 159 normal controls; mean age=75.3±7.9 years, m/f=91/68

ADNI database; <u>https://adni.loni.usc.edu/</u>

FSL BET on T1w in native space and non-linear registration to MNI152 space

Intensity rescaling based on white matter peak(s) in the brain tissue histogram per image

Results - Performance

Input images	Binarizer	Accuracy	Sensitivity	Specificity	AUC
	BinarizerAccuracySensitivitySpecificity $13,75\%$ $62.51\pm5.45\%$ $[53.39\%, 72.09\%]$ $62.26\pm9.48\%$ $[47.70\%, 84.93\%]$ $62.79\pm8.35\%$ $[46.56\%, 74.$ $27,50\%$ $72.74\pm5.49\%$ $[61.41\%, 82.11\%]$ $71.37\pm9.10\%$ $[56.86\%, 88.87\%]$ $74.15\pm9.94\%$ $[51.67\%, 88.$ $41,25\%$ $77.95\pm4.57\%$ $[70.90\%, 86.34\%]$ $76.74\pm9.41\%$ $[60.10\%, 94.56\%]$ $79.15\pm6.80\%$ $[64.54\%, 89.$ None $71.12\pm5.01\%$ $[61.34\%, 82.52\%]$ $67.47\pm9.90\%$ $[51.66\%, 85.94\%]$ $74.76\pm7.07\%$ $[62.03\%, 85.$ $13,75\%$ $78.12\pm4.63\%$ $[70.79\%, 85.79\%]$ $76.83\pm7.03\%$ $[62.65\%, 87.05\%]$ $79.40\pm6.76\%$ $[65.53\%, 89.$ $27,50\%$ $79.57\pm3.92\%$ $[73.46\%, 86.45\%]$ $78.32\pm7.74\%$ $[66.79\%, 93.87\%]$ $80.92\pm7.71\%$ $[72.31\%, 88.67\%]$ $41,25\%$ $81.56\pm4.63\%$ $[72.31\%, 88.67\%]$ $79.69\pm9.42\%$ $[62.59\%, 96.48\%]$ $83.50\pm6.77\%$ $[72.48\%, 96.$ $11,25\%$ $81.63\pm3.77\%$ $81.22\pm6.94\%$ $82.11\pm7.92\%$	62.79±8.35% [46.56%, 74.42%]	0.63±0.054 [0.53, 0.72]		
Notive T1w	27,50%	72.74±5.49% [61.41%, 82.11%]	71.37±9.10% [56.86%, 88.87%]	74.15±9.94% [51.67%, 88.37%]	0.73±0.055 [0.61, 0.82]
	tive T1w 41,25% 77.95±4.57 [70.90%, 80 None 13,75% 78.12±4.63	77.95±4.57% [70.90%, 86.34%]	76.74±9.41% [60.10%, 94.56%]	79.15±6.80% [64.54%, 89.56%]	0.78±0.045 [0.71, 0.86
	None	71.12±5.01% [61.34%, 82.52%]	67.47±9.90% [51.66%, 85.94%]	74.76±7.07% [62.03%, 85.45%]	0.71±0.05 [0.62, 0.83]
	13,75%	78.12±4.63% [70.79%, 85.79%]	76.83±7.03% [62.65%, 87.05%]	79.40±6.76% [65.53%, 89.91%]	0.78±0.046 [0.71, 0.86]
Skull-stripped	27,50%	79.57±3.92% [73.46%, 86.45%]	78.32±7.74% [66.79%, 93.87%]	80.92±7.71% [67.53%, 91.95%]	0.80±0.039 [0.74, 0.86]
T1w	41,25%	81.56±4.63% [72.31%, 88.67%]	79.69±9.42% [62.59%, 96.48%]	83.50±6.77% [72.48%, 96.29%]	0.82±0.046 [0.72, 0.89]
	None	81.63±3.77% [74.36%, 88.01%]	81.22±6.94% [69.59%, 93.15%]	82.11±7.92% [65.50%, 93.60%]	0.82±0.037 [0.74, 0.88]

Medical University of Graz

Related - Performance

Classification architectures	Training data	Image preprocessing	Intensity rescaling	Data split	Training approach	Transfer learning	Task	Validation balanced accuracy	Exp #
3D subject-level	Baseline	Minimal	None	subject-level	single-CNN	None	AD vs CN	0.50 ± 0.00 [0.50, 0.50,	1
CNN								0.50, 0.50, 0.50]	
			MinMax					0.80 ± 0.05 [0.76, 0.86,	2
								0.81, 0.85, 0.74]	
						AE pre-training		0.82 ± 0.05 [0.74, 0.90,	3
								0.83, 0.77, 0.83]	
	Longitudinal	Minimal	MinMax	subject-level	single-CNN	AE pre-training		0.85 ± 0.04 [0.88, 0.88,	4
				-				0.84, 0.85, 0.78]	
		Extensive						0.86 ± 0.06 [0.88, 0.94,	5
								0.85, 0.85, 0.76]	
							A. 1 (1972) (197		

Minimal preprocessing: No skull-stripping!

Intensity rescaling is important!

ELSEVIER

Medical Image Analysis Volume 63, July 2020, 101694

Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation

Junhao Wen ^{a, b, c, d, e, †}, Elina Thibeau-Sutre ^{a, b, c, d, e, †}, Mauricio Diaz-Melo ^{e, a, b, c, d}, Jorge Samper-González ^{e, a, b, c, d}, Alexandre Routier ^{e, a, b, c, d}, Simona Bottani ^{e, a, b, c, d}, Didier Dormont ^{e, a, b, c, d, f}, Stanley Durrleman ^{e, a, b, c, d}, Ninon Burgos ^{a, b, c, d, e}, Olivier Colliot ^{a, b, c, d, e, f, g} 兴 國, for the Alzheimer's Disease Neuroimaging Initiative [#], the Australian Imaging Biomarkers and Lifestyle flagship study of ageing ^{##}

- ^a Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France
- ^b SorbonneUniversité, ParisF-75013, France
- ^c Inserm, U 1127, Paris F-75013, France
- ^d CNRS, UMR 7225, Paris F-75013, France
- e Inria, Aramis project-team, Paris F-75013, France
- ^f Department of Neuroradiology, AP-HP, Hôpital de la PitiéSalpêtrière, Paris F-75013, France
- ^g Department of Neurology, AP-HP, Hôpital de la PitiéSalpêtrière, Paris F-75013, France

Results - Heatmaps, Unmatched-Data

Results - Heatmaps, Propensity-Score-Matched

Related - Explainability

а

Medical University of Graz

Related -(Simulated) Brain Aging

[1] Hofmann et al, NeuroImage, 2022

Discussion & Conclusion

- Deep learning AD classification is strongly driven by volumetric features.
- Gray-white matter texture does not improve classification performance.

2nd Research Question

Is it possible to integrate (problem specific) a priori information into the deep learning training process using explainability?

Medical University of Graz

scientific reports

Explore content Y About the journal Y Publish with us Y

<u>nature</u> > <u>scientific reports</u> > <u>articles</u> > article

Article Open access Published: 24 November 2022

Interpretable brain disease classification and relevanceguided deep learning

<u>Christian Tinauer</u>, <u>Stefan Heber</u>, <u>Lukas Pirpamer</u>, <u>Anna Damulina</u>, <u>Reinhold Schmidt</u>, <u>Rudolf Stollberger</u>, <u>Stefan Ropele</u> & <u>Christian Langkammer</u>[™]

Scientific Reports 12, Article number: 20254 (2022) Cite this article

2905 Accesses 8 Altmetric Metrics

Regularization:

Interpretable brain disease classification and relevance-guided deep learning

Methods - Dataset

264 MRIs from 128 patients with probable AD; mean age=71.9±8.5 years, ProDem study

378 MRIs from 290 normal controls; mean age=71.3±6.4 years, community-dwelling study

- Skull stripping: FSL BET for brain masks
- Registrations: none (native space), linear to MNI152, nonlinear to MNI152
- Intensity rescaling with one fixed value for all images

Methods - Network

Medical University of Graz

Guided relevance by adaptive z⁺-rule

[1] Tinauer et al, Scientific Reports 2022

Methods - Loss function

$$loss_{relevance}(\mathbf{R}, \mathbf{M}) = -\mathbf{1}^T \operatorname{vec}(\mathbf{R} \odot \mathbf{M})$$

$$loss_{\text{Graz}^+} = loss_{\text{relevance}} + loss_{\text{CCE}}$$
$$= -\mathbf{1}^T \operatorname{vec}(\mathbf{R} \odot \mathbf{M}) - \sum_{i=1}^{\text{outputs}} y_i \cdot \log(\hat{y}_i)$$

Results - Performance

Classifier	Skull stripping	Registration	Balanced accuracy	Sensitivity	Specificity	AUC
		-	71.26 ± 2.86%	55.55 ± 7.51%	86.96 ± 3.95%	0.75 ± 0.02
CNN	No	Lin.	74.27 ± 3.83%	63.13 ± 9.05%	85.40 ± 6.45%	0.80 ± 0.05
		Nonlin.	77.61 ± 4.44%	64.79 ± 5.02%	90.43 ± 5.19%	0.85 ± 0.06
		-	77.66 ± 4.39%	69.70 ± 7.65%	85.63 ± 4.06%	0.83 ± 0.05
CNN	Yes	Lin.	79.45 ± 3.34%	76.87 ± 4.81%	82.03 ± 6.23%	0.86 ± 0.05
		Nonlin.	82.13 ± 5.08%	73.47 ± 7.89%	90.78 ± 4.92%	0.88 ± 0.05
		-	80.66 ± 4.80%	74.95 ± 7.85%	86.36 ± 2.85%	0.88 ± 0.04
CNN+Graz ⁺	No	Lin.	86.19 ± 6.01%	79.73 ± 10.72%	92.66 ± 3.73%	0.92 ± 0.04
		Nonlin.	83.50 ± 5.90%	77.16 ± 8.95%	89.83 ± 4.49%	0.90 ± 0.04
Logistic regression*	Yes	Lin.**	82.00 ± 4.25%	80.57 ± 7.16%	83.43 ± 2.45%	0.90 ± 0.04

Results - Heatmaps I

Results - Heatmaps II

Results

Discussion & Conclusion

- Preprocessing of MR images is crucial for the feature identification by DNNs.
- The proposed relevance-guided approach identified regions with highest relevance in brain tissue located adjacent to the ventricles.
- Increased feature sparsity improves the classification accuracy.

3rd Research Question

Does explainable deep learning capture pathological tissue changes?

Medical University of Graz

Validation:

Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification

Home > Explainable Artificial Intelligence > Conference paper

Explainable Concept Mappings of MRI: Revealing the Mechanisms Underlying Deep Learning-Based Brain Disease Classification

Conference paper | First Online: 10 July 2024 pp 202-216 | Cite this conference paper

Christian Tinauer 🖂, Anna Damulina, Maximilian Sackl, Martin Soellradl, Reduan Achtibat, Maximilian Dreyer, Frederik Pahde, Sebastian Lapuschkin, Reinhold Schmidt, Stefan Ropele, Wojciech Samek & Christian Langkammer 🖂

Explainable Artificial Intelligence

(xAI 2024)

Methods - Dataset

- Brain masks from T1-weighted MPRAGE images
- R2* maps from images of spoiled FLASH sequence using a monoexponential model
- 226 R2* maps from 117 patients
- 226 R2* maps from 219 controls

[1] Khalil et al, Neurology, 2015

Methods - Network

Medical University of Graz

Guided relevance by adaptive z⁺-rule

[1] Tinauer et al, Scientific Reports 2022

Results I - Heat maps from R2* maps input

thalami - caudate nuclei - putamen - pallidum

Methods - Heat- vs Concept-Mapping

Results II - Concept maps from R2* maps input

R_{AD,mean}

Results - ROI-based t-test

Region	Median R_2^* NC (sec ⁻¹)	Median R_2^* AD (sec ⁻¹)	p Value
Left basal ganglia	29.00 (27.24-32.66)	30.76 (28.15-33.60)	0.006*
Left caudate nucleus	23.37 (21.43-25.70)	24.28 (22.54-26.71)	0.004*
Left pallidum	36.52 (33.17-40.58)	36.43 (33.61-41.30)	0.401
Left putamen	$27.48\ (25.15-31.75)$	$30.11 \ (27.27 \text{-} 33.94)$	0.000*
Left hippocampus	$16.40 \ (15.34 - 17.49)$	$15.88 \ (14.78-17.06)$	0.003*
Left thalamus	$19.70 \ (18.77-20.89)$	$19.71 \ (18.85 - 20.92)$	0.972
Right basal ganglia	29.21 (26.74-32.14)	30.62 (28.09-32.91)	0.002^{*}
Right caudate nucleus	$23.06\ (21.35-25.17)$	24.19(22.11-25.94)	0.002^{*}
Right pallidum	36.25 (32.86-40.61)	36.76(33.68-41.54)	0.094
Right putamen	$28.08 \ (25.07 - 31.76)$	$30.17 \ (27.08-34.11)$	0.000*
Right hippocampus	$16.44 \ (15.54 - 17.38)$	$16.02 \ (14.88-17.19)$	0.008*
Right thalamus	$19.97 \ (18.82 - 20.71)$	19.76 (18.90-20.62)	0.497

Related

XAI-based relevance maps

Discussion & Conclusion

Thank you!

Christian Tinauer Department of Neurology Auenbruggerplatz 22 8036 Graz, Austria

christian.tinauer@medunigraz.at " www.neuroimaging.at https://github.com/christiantinauer

