Semantic Category Interference in Overt Picture Naming: Sharpening Current Density Localization by PCA

The study investigated the neuronal basis of the retrieval of words from the mental lexicon. The semantic category interference effect was used to locate lexical retrieval processes in time and space. This effect reflects the finding that, for overt naming, volunteers are slower when naming pictures out of a sequence of items from the same semantic category than from different categories. Participants named pictures blockwise either in the context of same- or mixed-category items while the brain response was registered using magnetoencephalography (MEG). Fifteen out of 20 participants showed longer response latencies in the same-category compared to the mixed-category condition. Event-related MEG signals for the participants demonstrating the interference effect were submitted to a current source density (CSD) analysis. As a new approach, a principal component analysis was applied to decompose the grand average CSD distribution into spatial subcomponents (factors). The spatial factor indicating left temporal activity revealed significantly different activation for the same-category compared to the mixed-category condition in the time window between 150 and 225 msec post picture onset. These findings indicate a major involvement of the left temporal cortex in the semantic interference effect. As this effect has been shown to take place at the level of lexical selection, the data suggest that the left temporal cortex supports processes of lexical retrieval during production.

Selected Publications

Burkhard Maess, Angela D. Friederici, M. Damian, Antje S. Meyer, and Willem J. M. Levelt, "Semantic category interference in overt picture naming: Sharpening current density localization by PCA," Journal of Cognitive Neuroscience 14 (3), 455-462 (2002).
Go to Editor View