Journal Article (30)

2023
Journal Article
Singer, J. J. D.; Cichy, R. M.; Hebart, M. N.: The spatiotemporal neural dynamics of object recognition for natural images and line drawings. The Journal of Neuroscience 43 (3), pp. 484 - 500 (2023)
2022
Journal Article
Le, L.; Ambrogioni, L.; Seeliger, K.; Güçlütürk, Y.; van Gerven, M.; Güçlü, U.: Brain2Pix: Fully convolutional naturalistic video frame reconstruction from brain activity. Frontiers in Neuroscience 16, 940972 (2022)
Journal Article
Kaniuth, P.; Hebart, M. N.: Feature-reweighted representational similarity analysis: A method for improving the fit between computational models, brains, and behavior. NeuroImage 257, 119294 (2022)
Journal Article
Singer, J.; Seeliger, K.; Kietzmann, T. C.; Hebart, M. N.: From photos to sketches-how humans and deep neural networks process objects across different levels of visual abstraction. Journal of Vision 22 (2), 4 (2022)
Journal Article
Grootswagers, T.; Zhou, I.; Robinson, A. K.; Hebart, M. N.; Carlson, T. A.: Human EEG recordings for 1,854 concepts presented in rapid serial visual presentation streams. Scientific Data 9 (1), 3 (2022)
2021
Journal Article
Muttenthaler, L.; Hebart, M. N.: THINGSvision: A Python toolbox for streamlining the extraction of activations from deep neural networks. Frontiers in Neuroinformatics 15, 679838 (2021)
Journal Article
Liu, P.; Chrysidou, A.; Doehler, J.; Hebart, M. N.; Wolbers, T.; Kuehn, E.: The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 10, e60090 (2021)
Journal Article
Seeliger, K.; Ambrogioni, L.; Güçlütürk, Y.; van den Bulk, L. M.; Güçlü, U.; van Gerven, M. A. J.: End-to-end neural system identification with neural information flow. PLoS Computational Biology 17 (2), e1008558 (2021)
2020
Journal Article
Hebart, M. N.; Zheng, C. Y.; Pereira, F.; Baker, C. I.: Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nature Human Behaviour 4 (11), pp. 1173 - 1185 (2020)
Journal Article
Hebart, M. N.; Schuck, N. W.: Current topics in computational cognitive neuroscience. Neuropsychologia 147, 107621 (2020)

Conference Paper (3)

2024
Conference Paper
Le, L.; Papale, P.; Seeliger, K.; Lozano, A.; Dado, T.; Wang, F.; Roelfsema, P.; van Gerven, M.; Güçlütürk, Y.; Güçlü, U.: MonkeySee: Space-time-resolved reconstructions of natural images from macaque multi-unit activity. In: Advances in Neural Information Processing Systems, Vol. 37. (2024)
2023
Conference Paper
Hebart, M. N.: Revealing interpretable object representations from human visual cortex and artificial neural networks. In: Proceedings of the 11th International Winter Conference on Brain-Computer Interface (BCI). IEEE (2023)
2022
Conference Paper
Hansen, H.; Hebart, M. N.: Semantic features of object concepts generated with GPT-3. In: Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 44. (2022)

Meeting Abstract (4)

2023
Meeting Abstract
Singer, J.; Karapetian, A.; Hebart, M. N.; Cichy, R.: Revealing the locus and content of behaviorally relevant information about real-world scenes in human visual cortex. In Journal of Vision, 23, 4712. Scholar One, Inc., Charlottesville, VA (2023)
2021
Meeting Abstract
Schmidt, F.; Hebart, M. N.; Schmid, A.; Fleming, R. W.: The mental representation of materials distilled from >1.5 million similarity judgements. In Journal of Vision, 21, 1981. Scholar One, Inc., Charlottesville, VA (2021)
Meeting Abstract
Seeliger, K.; Roth, J.; Schmid, T.; Hebart, M. N.: Synthesizing preferred stimuli for individual voxels in the human visual system. In Journal of Vision, 21, 2311. Scholar One, Inc., Charlottesville, VA (2021)
2020
Meeting Abstract
Kaniuth, P.; Hebart, M. N.: Tuned representational similarity analysis: Improving the fit between computational models of vision and brain data. In Journal of Vision, 20, 1076. Vision Sciences Society Annual Meeting 2020, June 19, 2020 - June 24, 2020. Scholar One, Inc., Charlottesville, VA (2020)

Talk (17)

2023
Talk
Seeliger, K.: Leveraging massive fMRI data sets and deep learning to synthesize images preferred by higher visual system areas. Neural Coding Lab (Umut Güçlü), Donders Institute, Radboud University, Nijmegen, the Netherlands (virtual) (2023)
Talk
Seeliger, K.: Leveraging massive fMRI data sets and deep learning to synthesize images preferred by higher visual system areas. Bradley Love Lab, Division of Psychology and Language Sciences, University College London, United Kingdom (2023)
Talk
Seeliger, K.: Leveraging massive fMRI data sets and deep learning to synthesize images preferred by higher visual system areas. Retreat of Neural Dynamics of Visual Cognition Lab (Radoslaw Cichy, FU Berlin), Eberswalde, Germany (2023)
Go to Editor View