PhD Robert Barry | Realizing sub-second and sub-millimeter spinal cord fMRI at 7 Tesla

Guest Lecture

  • Date: Jul 11, 2023
  • Time: 12:00 PM - 12:30 PM (Local Time Germany)
  • Speaker: PhD Robert Barry
  • Athinoula A. Martinos Center for Biomedical Imaging
  • Location: MPI for Human Cognitive and Brain Sciences
  • Room: Charlotte Buehler Room (C402)
  • Host: Max Planck Research Group Pain Perception
  • Contact: eippert@cbs.mpg.de
Magnetic resonance imaging of the human spinal cord at 7 Tesla offers new opportunities to visualize structures with high spatial resolution and enhanced conspicuity, and to detect functional networks with greater sensitivity. Sub-millimeter in-plane fMRI acquisitions are desirable and achievable, but published studies have had modest temporal resolution (>2 sec). Using a custom-built 7T pTx spine coil, we demonstrate sub-second and sub-millimeter cervical cord fMRI for the first time. Employing a 3D multi-shot sequence with appropriate phase corrections and NORDIC denoising, our data demonstrate temporal signal-to-noise ratios comparable to those of supra-second protocols, and we replicate bilateral functional connectivity patterns previously published in the cord. Realizing sub-second and sub-millimeter spinal cord fMRI opens new avenues of discovery that echo what has been reported through high spatiotemporal resolution brain fMRI.
Magnetic resonance imaging of the human spinal cord at 7 Tesla offers new opportunities to visualize structures with high spatial resolution and enhanced conspicuity, and to detect functional networks with greater sensitivity. Sub-millimeter in-plane fMRI acquisitions are desirable and achievable, but published studies have had modest temporal resolution (>2 sec). Using a custom-built 7T pTx spine coil, we demonstrate sub-second and sub-millimeter cervical cord fMRI for the first time. Employing a 3D multi-shot sequence with appropriate phase corrections and NORDIC denoising, our data demonstrate temporal signal-to-noise ratios comparable to those of supra-second protocols, and we replicate bilateral functional connectivity patterns previously published in the cord. Realizing sub-second and sub-millimeter spinal cord fMRI opens new avenues of discovery that echo what has been reported through high spatiotemporal resolution brain fMRI.

Poster
Go to Editor View