Robust U-fibre connectivity mapping can be achieved in vivo in the early visual processing stream using combined diffusion weighted imaging and functional retinotopy
We explore spatially resolved lipid imaging using matrix-assisted laser desorption/ionization (MALDI) as a method for validating MRI-based myelin biomarkers.
In this project, we investigate the brains of wild chimpanzees who died of natural causes at different developmental stages using high-resolution quantitative MRI and histology.
DeepcomplexMRI deep learnig reconstruction has been modified to process multi-echo MRI images. First results for different undersampling strategies suggest that performance is comparable to modern iterative algorithms like ENLIVE while taking only about 5 minutes to reconstruct a full 3D 1mm³/voxel resolved head image stack.
In this project, we study the resolution limits of different high-resolution functional magnetic resonance imaging (fMRI) methods to resolve differences within the cerebral cortex.
Understanding brain development and decline is of utmost importance in an aging society. MRI Biophysics Research Group aims to uncover crucial mechanisms of human brain aging, by identifying the contribution of iron accumulation, a major determinant of brain development and brain decline.
Embedded in the clinical trial NISCI (Nogo inhibition in spinal cord injury: www.nisci-2020.eu), we employ whole brain quantitative imaging at 3 Tesla as a new biomarker for de- and regeneration.
We used high-resolution fMRI and multivariate pattern analysis (MVPA) to explore how attentional modulation of working memory affects laminar specific representations in dorsolateral prefrontal cortex (dlPFC).