Veranstaltungsarchiv

Gastgeber: Abteilung Neurophysik Ort: MPI für Kognitions- und Neurowissenschaften

Dr Steffen Bollmann | How could we make scientific software FAIR

Gastvortrag
Despite the vital role of scientific software, it remains an overlooked part of research, often developed within short funding periods with little support for long-term maintenance. This results in software that is hard to discover and challenging to install. It also lacks interoperability across different computing systems, hindering its reuse and violating the FAIR principles - which advocate for scientific outputs to be Findable, Accessible, Interoperable, and Reusable. In this talk, I will present our attempts at this problem through the Neurodesk.org project, and I will show what we are planning next. [mehr]
Scrutiny of the cortical neuronal circuits underlying human visual perception typically involves the summarization of large-scale recordings of brain activity under different perceptual states, with the combination of various measurement modalities and modeling techniques being critical in revealing organizing principles. In this seminar, we'll delve into the relationship between anatomical structure and evolving patterns of neuronal functional connectivity across the early visual foveal cluster (V1-V2-V3). I will show how we can inform our understanding of visual perception through different recording modalities, combining high-resolution fMRI and laminar electrophysiology with computational modeling. I will present key findings on task-dependent modulation of directed interactions across visual cortical areas in humans and laminar distinctions in visual processing in Macaque, as well as touch on preliminary validation work. Finally, I look forward to discussing new advancements and techniques and to providing a clearer picture of neuronal circuit dynamics at the mesoscopic level. [mehr]

Prof. Dr. Magdalena Sauvage | Towards a Functional Architecture of Memory

Gastvortrag

Professor Jörn Diedrichsen | What is the function of the human cerebellum across cognitive domains?

Gastvortrag

Dr. Julia Moser | Precision Functional Brain Imaging in Infants

Gastvortrag

Justin Haldar | Constrained Magnetic Resonance Imaging and the Blessings of Dimensionality

Gastvortrag
Magnetic resonance (MR) imaging technologies provide unique capabilities to probe the mysteries of biological systems, and have enabled novel insights into anatomy, metabolism, and physiology in both health and disease. However, while MRI is decades old, is associated with multiple Nobel prizes (in physics, chemistry, and medicine), and has already revolutionized fields like medicine and neuroscience, current MRI methods are still very far from achieving the full potential of the MRI signal. In particular, traditional methods are based on classical sampling theory, and suffer from fundamental trade-offs between signal-to-noise ratio, spatial resolution, and data acquisition speed. These issues are exacerbated in high-dimensional applications, due to the curse of dimensionality. Our work addresses the limitations of traditional MR imaging using signal processing approaches that are enabled by modern computational capabilities. These approaches are possible because of certain "blessings of dimensionality," e.g., that high-dimensional data often possess unexpectedly simple structure that can be exploited to alleviate classical barriers to fast high-resolution imaging. This seminar will describe approaches we have developed that use novel constrained imaging models to guide the design of new MR data acquisition and image reconstruction methods, and enable substantial acceleration of both low-dimensional and high-dimensional MR imaging experiments. [mehr]

Prof. Christian Langkammer | Post-mortem MRI for the validation of quantitative MRI parameters

Gastvortrag
MRI signal generation is substantially influenced by factors such as water content, iron, myelin, and several other contributors. Iron levels can be directly assessed using mass spectrometry, while the quantitative impacts of myelin's structure and composition remain unknown to a certain extent and are often inferred from theoretical simulations. Additionally, MRI relaxation rates and susceptibility are sensitive to these tissue constituents, but their specificity is limited. In this context, post-mortem investigations utilizing complementary methods such as TEM, LA-ICP-MS, MALDI-MSI, CARS, and SAXS-TT provide unique insights for the validation and understanding of quantitative MRI parameters. However, in-situ post-mortem MRI has to accommodate for factors like variable temperature, deoxygenated blood, and perfusion. Furthermore, the process of formalin fixation introduces a significant confounder, often obstructing direct conclusions. In this presentation, I aim to summarize our work on translating post-mortem MRI findings to in-vivo conditions, outline the analytical methods used to assess brain tissue structure and composition, and discuss potential collaborations with the MPI CBS. [mehr]

Prof. Peter Krüger | Atomic probes as sensitive tools: measuring brain signals and beyond

Gastvortrag
Magnetic fields are ubiquitous in nature and since a long time also in technology. Yet, there are many open questions, needs for research and emerging new applications. Standards need to be set or refined, and more accurate calibrations are required by industrial adopters of new technologies. A particular challenge and opportunity arise at the lowest end of the spectrum of magnetic fields. With demonstrated measurement sensitivities beyond the femtotesla (per root Hertz) scale, the neuronal activities of the brain following a peripheral nerve stimulus become detectable in a single trial, for example. While even the foundations of physics can be tested at the frontier of lowest metrological noise floors, a current trend is to make magnetic field measurement and imaging viable in application contexts beyond quantum physics laboratories. Here, we will discuss such developments in terms of sensor developments, measurement environments and key use cases. We will focus on atomic gas-based probes of stationary and slowly varying magnetic fields. With trapped ultracold gases, high resolution field mapping can be achieved with relevance to material developments such as indium tin oxide replacements for next-generation touch screens and solar panels. On the other hand, cells containing thermal atomic vapours can provide highest field sensitivities as part of optically pumped magnetometers with use in clinical neurology or current-density imaging in electric vehicle batteries. [mehr]

Dr Nicole Seiberlich | Magnetic Resonance Fingerprinting: Challenges and Opportunities

Gastvortrag
Magnetic Resonance Fingerprinting (MRF) was introduced in 2013 as an approach for mapping multiple tissue properties simultaneously using MRI. This presentation will provide an overview of the MRF technique, with an emphasis on practical aspects of implementation, and describe how tissue property maps derived from MRF may be leveraged to provide additional information about structure and function in the brain and beyond. [mehr]

Nicolas Boulant | Towards parallel transmission in routine with universal pulses

Gastvortrag
Mehr anzeigen
Zur Redakteursansicht