Veranstaltungsarchiv

Raum: Wilhelm Wundt Raum (A400) Gastgeber: Abteilung Neurophysik

Prof. Dr. Magdalena Sauvage | Towards a Functional Architecture of Memory

Gastvortrag

Professor Jörn Diedrichsen | What is the function of the human cerebellum across cognitive domains?

Gastvortrag

Dr. Julia Moser | Precision Functional Brain Imaging in Infants

Gastvortrag

Dr Nicole Seiberlich | Magnetic Resonance Fingerprinting: Challenges and Opportunities

Gastvortrag
Magnetic Resonance Fingerprinting (MRF) was introduced in 2013 as an approach for mapping multiple tissue properties simultaneously using MRI. This presentation will provide an overview of the MRF technique, with an emphasis on practical aspects of implementation, and describe how tissue property maps derived from MRF may be leveraged to provide additional information about structure and function in the brain and beyond. [mehr]

Nicolas Boulant | Towards parallel transmission in routine with universal pulses

Gastvortrag

Prof. Ingolf Sack, Helge Herthum, Dr. Stefan Hetzer | Magnetic resonance elastography of the brain

Gastvortrag

PD Dr Eike Budinger | From birth until old age: Anatomy and development of cortical multisensory connections

Gastvortrag
Multisensory integration does not only recruit higher-level association cortex, but also primary sensory cortices like A1 (auditory), S1 (somatosensory), and V1 (visual). The underlying anatomical pathways, which might preferentially serve short-latency integration processes, include direct thalamocortical and corticocortical connections across the senses. We investigated how these multisensory connections develop over the individual’s lifespan and how early sensory deprivation alters them. Using tracer injections into A1, S1, and V1 of a rodent model (Mongolian gerbil) we could show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear towards the end of the critical sensory period. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional imaging reveals a mostly reduced stimulus-induced activity but a higher functional connectivity specifically between primary areas in deprived animals. In adult animals, primary sensory cortices receive substantial inputs from thalamic nuclei and cortical areas of non-matched sensory modalities. In very old animals, these multisensory connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches and is accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, we show that during early development, intracortical multisensory connections are formed as a consequence of sensory driven multisensory thalamocortical activity and that during aging, multisensory processing is probably shifted from primary cortices towards other sensory brain areas. [mehr]

Dr Nikolai I. Avdievich | Improvement of Central SNR and Transmit Coverage of a Human Head Phased Array at Ultra-High Field Using Dipole Antennas

Gastvortrag
The first part of the presentation deals with an improvement of the central SNR of human head array at ultra-high magnetic fields (UHF, > 7T). Increasing the number of surface loops in a human head receive (Rx) array improves the peripheral signal-to-noise ratio (SNR), while SNR near the brain center doesn’t substantially change. Recent theoretical works demonstrated that an optimal central SNR at UHF requires contribution of two current patterns associated with a combination of surface loops and dipole antennas. Use of various dipole antennas as MRI RF detectors has been recently introduced and successfully implemented mostly for imaging human body sized objects. In this work, we evaluated and compared several Rx dipole-like elements for use within human head UHF Rx-array. We constructed and characterized novel single-row and double-row phased arrays, which consisted of transceiver (TxRx) surface loops and Rx-dipoles. We demonstrated that combining surface loops and dipole-like elements substantially (> 30%) improve SNR near the brain center as compare to arrays consisted of surface loops only. The second part of the presentation discusses an improvement of the transmit (Tx) coverage of the human head array coils. Due to a substantial shortening of the RF wave length (below 15 cm at 7 T), RF magnetic field at UHF has a specific Tx excitation pattern with strongly decreased (more than 2 times) values at the periphery of a human head. This effect is seen not only in the transversal slice but also in the coronal and sagittal slices, which considerably limits the longitudinal Tx-coverage (along the magnet’s axis) of conventional surface loop head arrays. In this work, we developed a novel human head UHF array consisted of 8 TxRx folded dipole antennas circumscribing a head. Due to an asymmetrical shape of dipole elements, the array couples to the intrinsic “dielectric resonance” mode of the head. Due to this interaction, firstly, the new array provides for a simple way of minimizing the maximum local SAR. Secondly, it provides for a longitudinal coverage better than that achieved by a similar array consisted of unfolded dipoles as well as by an 8-element single-row and 16-element double-row surface loop arrays. [mehr]

Dr Marc Tittgemeyer | Food Intake in Control of Cognition or Cognition in Control of Food Intake? A bottom-up perspective on cognitive processes underlying food intake regulation

Gastvortrag

Prof. Aviv Mezer | Identifying white-matter pathways using quantitative MRI

Gastvortrag
Mehr anzeigen
Zur Redakteursansicht