Eine Kombination aus diffusionsgewichteter Bildgebung und funktioneller retinotopischer Kartierung ermöglicht eine zuverlässige Darstellung der strukturellen Verbindungen der sogenannten U‑Fasern in vivo in der frühen Signalverarbeitung in der Sehrinde.
Wir untersuchen wie Maße der quantitativer Magnetresonanztomography (qMRI) in den verschiedenen Schichten der Hirnrinde mit der Anzahl von Nervenzellen, der Expression von Genen in der Hirnrinde und mit den Faserverbindungen in der weißen Substanz zusammenhängen. Unser Ziel ist neuartige Biomarker für den Verlauf neurodegenerativer Erkrankungen zu…
Wir untersuchen die räumlich aufgelöste Lipidbildgebung mithilfe der Matrix-unterstützten Laserdesorption / -ionisation (MALDI) als Methode zur Validierung von MRT-basierten Myelin-Biomarkern.
In diesem Projekt untersuchen wir das Gehirn wild lebender Schimpansen, die in verschiedenen Entwicklungsstadien an natürlichen Ursachen gestorben sind. Dazu wird hochaufgelöste quantitative MRT und Histologie benutzt.
Die funktionelle Bildgebung des Zusammenspiels zwischen Basalganglien und kortikalen Bereichen erfordert ein bezüglich der untersuchten Region und der notwendigen Bildgebungs- beschleunigung sorgfältig angepasstes fMRT-Protokoll. Wir haben daher eine Studie bei einer Feldstärke von 7 Tesla durchgeführt, in der die Abhängigkeit des detektierten…
Die säulenartigen Strukturen in der menschlichen Sehrinde werden mit hochauflösenden fMRT-Methoden mit dem Ziel untersucht, die Quelle neuronaler Aktivität genauer zu lokalisieren.
Die Kombination von Diffusions- und T1-Kontrast ermöglicht die Untersuchung der strukturellen Komplexität der grauen Substanz der menschlichen Hirnrinde in vivo.
Wir haben einen Zusammenhang zwischen einem oft gemessenen MRT-Parameter (R2*) und der Dichte und Eisenkonzentration von dopaminergen Neuronen in Nigrosom 1 hergestellt, indem wir quantitative 3D-Eisenhistologie mit ultrahochaufgelöstem MRT und Gewebeeisenextraktion an postmortalem Gewebe sowie analytischen Modellierungsansätzen verbunden haben.
In diesem Projekt charakterisieren wir kortikalen Schichten durch biomechanische Modellierung und simulieren die Entwicklung des menschlichen Kortexgewebes in vivo unter Verwendung hyperelastischer Materialmodelle.
Wir studieren mit hochauflösender Licht- und Elektronenmikroskopie die Mikroanatomie von Faserverbindungen in der weißen Substanz des menschlichen Gehirns. Ziel ist eine verbesserte Interpretation von Magnetresonanztomographie-basierten biophysikalischen Modellen der Mikrostruktur der weißen Substanz.
Eingebunden in die klinische Studie NISCI (Nogo Inhibierung bei akuten Rückenmarksverletzungen: www.nisci-2020.eu) verwenden wir quantitative Ganzhirn-MRT-Aufnahmen bei 3 Tesla als Biomarker für De- und Regeneration.