Forschung

In der Abteilung Neurophysik arbeiten wir an der Entwicklung, Validierung und Anwendung nicht-invasiver quantitativer Magnetresonanztomographiemethoden (MRT-Methoden) für das menschliche Gehirn. Dabei wollen wir Eigenschaften abbilden, die historisch nur unter dem Mikroskop sichtbar waren, um die strukturelle und funktionelle Mikroorganisation des Gehirns zu untersuchen. Unsere Bildgebungsmethoden öffnen uns die Türen zur Erforschung der Gehirnentwicklung, von individuellen Unterschieden, Krankheitsmechanismen und Biomarkern in vivo. Die wissenschaftliche Expertise unserer Abteilung deckt alle Bereiche von der ersten Datenerfassung am MRT-Scanner bis hin zur finalen Datenanalyse ab.

Der auf dem Effekt des Magnetisierungs-Transfers beruhende "Arterial Blood Contrast" (ABC) konnte unter Verwendung einer Feldstärke von 7 Tesla mit einer isotropen räumlichen Auflösung von 1, 5 mm in Kombination mit einem konventionellen funktionellen MRT-Kontrast gemessen werden. [mehr]
DeepcomplexMRI deep learning Bildrekonstruktion wurde angepasst, um multi-echo MRT Bilder zu verarbeiten. Erste Versuche mit verschiedenen K- Raum-Abtastungen zeigen eine vergleichbare Performance zu modernen iterativen Algorithmen wie ENLIVE, benötigen aber nur ca. 5 Minuten zur Rekonstruktion des gesamten 3D 1mm³/voxel aufgelösten Kopfbildes. [mehr]
Eine kürzlich durchgeführte fMRT-Studie zeigte schichtspezifische Aktivität im Präfrontalkortex während einer Arbeitsgedächtnisaufgabe. Mit neu erhobenen Daten und einer vollautomatischen Analyse versuchten wir die ursprünglichen Ergebnisse zu replizieren. [mehr]
In diesem Projekt studieren wir die Myelinisierung des zerebralen Kortex mit hoher räumlicher Auflösung in lebendigen Probanden unter Verwendung von Verfahren der quantitativen Magnetresonanztomographie (MRT) bei ultrahohen magnetischen Feldstärken. [mehr]
In diesem Projekt untersuchen wir das Auflösungsvermögen von verschiedenen hochauflösenden Verfahren funktioneller Magnetresonanztomographie (fMRT), um Unterschiede innerhalb des zerebralen Kortex zu erkennen. [mehr]
Wir haben kt-Punkte-HF-Pulse implementiert und optimiert, um Verzerrungen und Shading-Artefakte in der ultrahochauflösenden Ganzhirn-MPM zu reduzieren. [mehr]
Wir haben hochauflösende fMRT und multivariate Musteranalysen (MVPA) verwendet, um zu erforschen, wie Aufmerksamkeitsmodulation des Arbeitsgedächtnisses schichtspezifische Repräsentationen im dorsolateralen Präfrontalkortex (dlPFC) beeinflusst. [mehr]
Wir führten laminare fMRT während einer verzögerten Übereinstimmungsaufgabe durch und variierten die Arbeitsgedächtnisbelastung sowie die Anforderung an eine motorische Reaktion. Wir fanden schichtspezifische univariate und multivariate Effekte. [mehr]
In diesem Projekt untersuchen wir die Möglichkeit, mesoskopische Strukturen im zerebralen Kortex mit hochauflösenden Methoden der funktionalen Magnetresonanztomographie (fMRT) aufzulösen. [mehr]
In diesem Projekt untersuchen wir das Gehirn wild lebender Schimpansen, die in verschiedenen Entwicklungsstadien an natürlichen Ursachen gestorben sind. Dazu wird hochaufgelöste quantitative MRT und Histologie benutzt. [mehr]
Wir untersuchen die räumlich aufgelöste Lipidbildgebung mithilfe der Matrix-unterstützten Laserdesorption / -ionisation (MALDI) als Methode zur Validierung von MRT-basierten Myelin-Biomarkern. [mehr]
Die Kombination von Diffusions- und T1-Kontrast ermöglicht die Untersuchung der strukturellen Komplexität der grauen Substanz der menschlichen Hirnrinde in vivo. [mehr]
In diesem Projekt charakterisieren wir kortikalen Schichten durch biomechanische Modellierung und simulieren die Entwicklung des menschlichen Kortexgewebes in vivo unter Verwendung hyperelastischer Materialmodelle. [mehr]
Eingebunden in die klinische Studie NISCI (Nogo Inhibierung bei akuten Rückenmarksverletzungen: www.nisci-2020.eu) verwenden wir quantitative Ganzhirn-MRT-Aufnahmen bei 3 Tesla als Biomarker für De- und Regeneration. [mehr]
Die vollständigen Inhalte sind zur Zeit nur in englischer Sprache verfügbar. Nutzen Sie bitte das Flaggensymbol im oberen rechten Bereich, um zur englischen Version zu wechseln. [mehr]
Eine Kombination aus diffusionsgewichteter Bildgebung und funktioneller retino­topischer Kartierung ermöglicht eine zuverlässige Darstellung der strukturellen Verbindungen der sogenannten U‑Fasern in vivo in der frühen Signalverarbeitung in der Sehrinde. [mehr]
Ziel unserer Arbeit ist die Verbesserung der Zuverlässigkeit von Multi-Parameter-Karten des menschlichen Gehirns durch prospektive bzw. retrospektive Korrektur von Kopfbewegung und B0-Feld Fluktuationen oder Korrektur durch Deep Learning für Artefakte unbekannten Ursprungs. [mehr]
Wir untersuchen wie Maße der quantitativer Magnetresonanztomography (qMRI) in den verschiedenen Schichten der Hirnrinde mit der Anzahl von Nervenzellen, der Expression von Genen in der Hirnrinde und mit den Faserverbindungen in der weißen Substanz zusammenhängen. Unser Ziel ist neuartige Biomarker für den Verlauf neurodegenerativer Erkrankungen zu entwickeln. [mehr]
Die funktionelle Bildgebung des Zusammenspiels zwischen Basalganglien und kortikalen Bereichen erfordert ein bezüglich der untersuchten Region und der notwendigen Bildgebungs- beschleunigung sorgfältig angepasstes fMRT-Protokoll. Wir haben daher eine Studie bei einer Feldstärke von 7 Tesla durchgeführt, in der die Abhängigkeit des detektierten Signals von den verwendeten MR-Parametern untersucht wurde. [mehr]
In vivo Quantifizierung transversaler Relaxationsparameter für verschiedene kortikale Strukturen des menschlichen Gehirns bei ultrahoher Feldstärke. [mehr]
Die säulenartigen Strukturen in der menschlichen Sehrinde werden mit hochauflösenden fMRT-Methoden mit dem Ziel untersucht, die Quelle neuronaler Aktivität genauer zu lokalisieren. [mehr]
Zur Redakteursansicht